全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Stratified Superconductivity in Single Crystal: Direct Measurement of Energy Gap between Homo-, and Inhomogeneous States

DOI: 10.1155/2014/317974

Full-Text   Cite this paper   Add to My Lib

Abstract:

The existence of space inhomogeneous superconductor insulator state (SISIS) found out earlier in polycrystalline samples of high- system ( ?K) is confirmed on single crystal. At ( ?K) the transition from the homogeneous superconducting state into the SISIS occurs. SISIS is characterized by the appearance of two gaps on the Fermi surface, semi- and superconducting, which are modulated in space in antiphase, the electric transport between superconducting regions being carried out due to Josephson tunneling. Thus the whole sample becomes a multiple Josephson system. Nonlinear curves are observed on single crystal at temperatures below . Dependence of curves on temperature and magnetic field, typical to a Josephson system, was found out. Besides, a step-like peculiarity at the values of voltage of the order of one and two superconducting gaps shows up. These peculiarities are suppressed by magnetic field much earlier than critical current. The new data firstly correlate with the model of SISIS and secondly permit for the first time to determining directly the energy gap between homogeneous and stratified superconductor states. 1. Introduction High-temperature superconductor (HTSC) has a cubic lattice and has no copper atoms or any other magnetic ions (has been found out in 1988 [1, 2]). These features distinguish it from other HTSC compounds and do not allow one to justify its HTSC properties on the bases of layered structure or internal magnetic ions. Relative towards high- ?? is the system [3] famous even before the discovery of high-temperature superconductivity [4] and in behaviour of which different anomalies [5], answering to the spatially inhomogeneous superconductivity, were observed already at the end of the seventies. In subject plan the spectrum of implemented to date researches of high- system appears to be rather wide. Not being exhaustive, the list displayed below illustrates this thematic latitude:(i)problems of synthesis, composition, and structure of high- [6–11];(ii)transport, phonon, and electron-phonon effects [12–14];(iii)heat capacity, thermal expansion, and so forth [15–20];(iv)investigation of magnetic response, accompanying superconducting transition, anisotropy of magnetic properties, and irreversibility effects in remagnetization [21–24];(v)electronic structure and mechanisms of superconductivity [25–36];(vi)superconductivity stratification and phase transitions metal-dielectric [37–40];(vii)Josephson and microwave properties and nonlinear effects under the microwaves action [41–46]. We chose the system for investigation, since,

References

[1]  L. F. Mattheiss, E. M. Gyorgy, and D. W. Johnson Jr., “Superconductivity above 20?K in the Ba-K-Bi-O system,” Physical Review B, vol. 37, no. 8, pp. 3745–3746, 1988.
[2]  R. J. Cava, B. Batlogg, J. J. Krajewski et al., “Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite,” Nature, vol. 332, no. 6167, pp. 814–816, 1988.
[3]  A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, “High-temperature superconductivity in the BaPb1-xBixO3 systems,” Solid State Communications, vol. 17, no. 1, pp. 27–28, 1975.
[4]  J. G. Bednorz and K. A. Muller, “Possible high Tc superconductivity in the Ba?La?Cu?O system,” Zeitschrift für Physik B Condensed Matter, vol. 64, pp. 189–193, 1986.
[5]  A. M. Gabovich and D. P. Moiseev, “Metal oxide superconductor BaPb1-xBixO3: unusual properties and new applications,” Soviet Physics Uspekhi, vol. 29, pp. 1135–1150, 1986.
[6]  M. L. Norton and H. Tang, “Superconductivity at 32?K in electrocrystallized barium potassium bismuth oxide,” Chemistry of Materials, vol. 3, pp. 431–434, 1991.
[7]  L. Z. Zhao and M. L. Norton, “XPS study of Ba0.6K0.4BiO3,” Chinese Journal of Chemistry, vol. 11, no. 5, pp. 425–428, 1993.
[8]  J. L. Rehspringer and D. Niznansky, “Preparation of Ba0.6K0.4BiO3 pure superconducting powder,” Journal of Alloys and Compounds C, vol. 195, pp. 73–76, 1993.
[9]  C. J. Hou, H. Steinfink, L. Rabenberg, C. Hilbert, and H. Kroger, “Superconducting Ba0.6K0.4BiO3: thin film preparation by RF magnetron sputtering,” Journal of Materials Research, vol. 8, no. 8, pp. 1798–1804, 1993.
[10]  H.-T. Kim, K.-Y. Kang, W.-J. Kim, Y.-N. Choi, B.-J. Kim, and Y. C. Kim, “Synthesis of Ba0.6K0.4BiO3 superconductors and structural analysis using neutron powder diffraction experiment,” Journal of the Korean Physical Society, vol. 39, no. 6, pp. 1013–1018, 2001.
[11]  V. Raghuveer and A. Manthiram, “Effect of BaBiO3 and Ba0.6K0.4BiO3 additives on the rechargeability of manganese oxide cathodes in alkaline cells,” Electrochemistry Communications, vol. 7, no. 12, pp. 1329–1332, 2005.
[12]  A. I. Golovashkin, A. V. Gudenko, L. N. Zherikhina, A. M. Tskhrovrebov, and M. L. Norton, “The electron-phonon mechanism for resistivity in the high-temperature superconductor system Ba1-xKxBiO3,” Journal of Experimental and Theoretical Physics, vol. 79, no. 1, pp. 163–169, 1994.
[13]  M. Braden, W. Reichardt, A. S. Ivanov, and A. Y. Rumiantsev, “Anomalous dispersion of LO phonon branches in Ba0.6K0.4BiO3,” Europhysics Letters, vol. 34, no. 7, pp. 531–536, 1996.
[14]  D. Varshney, S. Shah, and R. K. Singh, “Superconductivity and normal state resistivity of Ba0.6K0.4BiO3: an optical phonon approach,” Superlattices and Microstructures, vol. 24, no. 6, pp. 409–422, 1998.
[15]  J. E. Graebner, L. F. Schneemeyer, and J. K. Thomas, “Heat capacity of superconducting Ba0.6K0.4BiO3 near Tc,” Physical Review B, vol. 39, no. 13, pp. 9682–9684, 1989.
[16]  M. F. Hundley, J. D. Thompson, and G. H. Kwei, “Specific heat of the cubic high-Tc superconductor Ba0.6K0.4BiO3,” Solid State Communications, vol. 70, no. 12, pp. 1155–1158, 1989.
[17]  S. J. Collocott, N. Savvides, and E. R. Vance, “Specific heat of polycrystalline Ba0.6K0.4BiO3 from 0.5 to 20?K,” Physical Review B, vol. 42, no. 7, pp. 4794–4796, 1990.
[18]  G. K. Panova, A. A. Shikov, B. I. Savel'ev et al., “Specific heat of the noncuprate oxide superconductor in magnetic fields,” Journal of Experimental and Theoretical Physics, vol. 76, no. 2, p. 302, 1993.
[19]  E. B. Nyeanchi, D. F. Brewer, T. E. Hargreaves et al., “Specific heat of single crystal Ba0.6K0.4BiO3 at low temperatures,” Solid State Communications, vol. 97, no. 3, pp. 175–178, 1996.
[20]  A. I. Golovashkin and A. P. Rusakov, “Experimental studies of the thermal and electronic properties of Ba1-xKxBiO3 and other perovskite-like oxide HTSC systems,” Physics-Uspekhi, vol. 43, pp. 184–187, 2000.
[21]  M. E. McHenry, M. P. Maley, G. H. Kwei, and J. D. Thompson, “Flux creep in a polycrystalline Ba0.6K0.4BiO3 superconductor,” Physical Review B, vol. 39, no. 10, pp. 7339–7342, 1989.
[22]  M. Baran, H. Szymczak, R. Szymczak, S. N. Barilo, V. I. Gatalskaya, and S. V. Shirayev, “Growth-induced anisotropy in Ba0.6K0.4BiO3 superconducting single crystal,” Applied Physics A, vol. 67, no. 4, pp. 413–416, 1998.
[23]  D. Hall, R. G. Goodrich, C. G. Grenier, P. Kumar, M. Chaparala, and M. L. Norton, “Magnetization measurements on single crystals of superconducting Ba0.6K0.4BiO3,” Philosophical Magazine B, vol. 80, no. 1, pp. 61–79, 2000.
[24]  D. A. Balaev, D. M. Gokhfel'd, L. A. Klinkova et al., “Increase of magnetization loop width in superconductor Ba0.6K0.4BiO3. Possible manifesting of phase separation,” Journal of Experimental and Theoretical Physics, vol. 118, no. 1, 2014.
[25]  M. S. Hegde, P. Barboux, C. C. Chang et al., “Electronic structure of high-Tc Ba0.6K0.4BiO3 by x-ray photoelectron spectroscopy,” Physical Review B, vol. 39, no. 7, pp. 4752–4755, 1989.
[26]  Z. Schlesinger, R. T. Collins, J. A. Calise et al., “Superconducting energy gap and a normal-state excitation in Ba0.6K0.4BiO3,” Physical Review B, vol. 40, no. 10, pp. 6862–6866, 1989.
[27]  W. Jin, M. H. Degani, R. K. Kalia, and P. Vashishta, “Superconductivity in Ba1-xKxBiO3,” Physical Review B, vol. 45, no. 10, pp. 5535–5546, 1992.
[28]  R. G. Goodrich, C. Grienier, D. Hall et al., “De Haas-van Alphen measurements in Ba0.6K0.4BiO3,” Journal of Physics and Chemistry of Solids, vol. 54, no. 10, pp. 1251–1258, 1993.
[29]  C. Y. Lee and P. A. Deymier, “Two-electron states in Ba0.6K0.4BiO3 via discretized path integral molecular dynamics,” Solid State Communications, vol. 102, no. 9, pp. 653–657, 1997.
[30]  V. Meregalli and S. Y. Savrasov, “Electron-phonon coupling and properties of doped BaBiO3,” Physical Review B, vol. 57, no. 22, pp. 14453–14469, 1998.
[31]  D. Jung and E. K. Choi, “Differences of structural and electronic properties in Ba1-xKxBiO3,” Bulletin of the Korean Chemical Society, vol. 20, no. 9, pp. 1045–1048, 1999.
[32]  A. Yu. Yakubovskii, S. V. Gudenko, N. V. Anshukova, A. I. Golovashkin, L. I. Ivanova, and A. P. Rusakov, “EPR observations of anomalous triplet states in Ba1-xKxBiO3 and BaPbyBi1-yO3,” Journal of Experimental and Theoretical Physics, vol. 88, no. 4, pp. 732–737, 1999.
[33]  D. Varshney and M. P. Tosi, “Pairing mechanism and superconducting state parameters of cubic perovskite Ba0.6K0.4BiO3,” Journal of Physics and Chemistry of Solids, vol. 61, no. 5, pp. 683–688, 2000.
[34]  D. Varshney, R. P. Kumhar, S. Shah, and R. K. Singh, “Effect of plasmons on superconducting transition temperature of Ba0.6K0.4BiO3: a three square well approach,” Indian Journal of Pure and Applied Physics, vol. 40, no. 12, pp. 879–886, 2002.
[35]  A. P. Menushenkov, I. A. Troyan, and M. I. Eremets, “Resonant Raman scattering in superconducting Ba1-xKxBiO3,” JETP Letters, vol. 77, no. 9, pp. 521–525, 2003.
[36]  G. é. Tsydynzhapov, A. F. Shevchun, M. R. Trunin et al., “Observation of a transition from BCS to HTSC-like superconductivity in Ba1-xKxBiO3 single crystals,” JETP Letters, vol. 83, no. 9, pp. 405–409, 2006.
[37]  N. V. Anshukova, A. I. Golovashkin, L. I. Ivanova, O. T. Malyuchkov, and A. P. Rusakov, “Insulator-metal phase transition and superconductivity in Ba1-xKxBiO3,” Journal of Experimental and Theoretical Physics, vol. 81, no. 6, pp. 1163–1170, 1995.
[38]  A. I. Golovashkin, L. N. Zherikhina, G. V. Kuleshova, A. M. Tskhovrebov, and M. L. Norton, “Self-consistent spatially inhomogeneous state in HTSC Ba1-xKxBiO3 single crystals,” Journal of Experimental and Theoretical Physics, vol. 102, no. 4, pp. 603–615, 2006.
[39]  H. Fujishita, T. Yamada, S. Nakada et al., “Spontaneous strain in Ba0.6K0.4BiO3,” Physica C, vol. 470, no. 1, pp. S770–S771, 2010.
[40]  A. I. Golovashkin, A. M. Tskhovrebov, L. N. Zherikhina, L. S. Uspenskaya, and M. Norton, “Visualization of space inhomogeneous superconductor-insulator state in high-Tc system Ba0.6K0.4BiO3 by magnetooptic method,” Journal of Physics: Conference Series, vol. 150, no. 4, Article ID 042043, 2009.
[41]  Q. Huang, J. F. Zasadzinski, K. E. Gray, D. R. Richards, and D. G. Hinks, “Ideal tunneling characteristics in Ba1-xKxBiO3 point-contact junctions with Au and Nb tips,” Applied Physics Letters, vol. 57, no. 22, p. 2356, 1990.
[42]  Y. Liu, J. F. Whitaker, and C. E. Platt, “Terahertz spectroscopy of superconducting thin film Ba0.6K0.4BiO3,” OSA Proceeding on Ultrafast Electronics and Optoelectronics, vol. 14, pp. 238–241, 1993.
[43]  M. R. Trunin, “Surface impedance of HTSC single crystals in the microwave band,” Physics-Uspekhi, vol. 41, no. 9, pp. 843–863, 1998.
[44]  A. A. Gallitto, M. Guccione, M. Guccione, and M. Li. Vigni, “Microwave third harmonic emission by Ba0.6K0.4BiO3 crystals,” International Journal of Modern Physics B, vol. 13, no. 9-10, pp. 1163–1168, 1999.
[45]  A. Agliolo Gallitto, M. Guccione, and M. Li Vigni, “Nonlinear microwave emission in Ba0.6K0.4BiO3 crystals near Tc,” Physica C, vol. 330, no. 3, pp. 141–149, 2000.
[46]  S. Fricano, M. Bonura, A. A. Gallitto, M. Li Vigni, L. A. Klinkova, and N. V. Barkovskii, “Microwave properties of Ba0.6K0.4BiO3 crystals,” European Physical Journal B, vol. 41, no. 3, pp. 313–318, 2004.
[47]  N. V. Anshukova, V. B. Ginodman, A. I. Golovashkin et al., “Anomalies in the temperature dependences, resistance, critical current, and critical magnetic field in Ba1-xKxBiO3,” Journal of Experimental and Theoretical Physics, vol. 70, no. 5, pp. 923–928, 1990.
[48]  L. N. Zherildfina, A. I. Golovashkin, A. V. Gudenko, and A. M. Tskhovrebov, “The de-current destruction of superconducting state and hysteresis effects in Ba-K-Bi-O,” Czechoslovak Journal of Physics, vol. 46, supplement 2, pp. 851–852, 1996.
[49]  N. V. Anshukova, V. B. Ginodman, A. I. Golovashkin et al., “I-V characteristics hysteresis in superconducting Ba1-XKXBiO3 under microwave radiation,” in Proceedings of the International Conference on High Temperature Superconductivity and Localization Phenomena, p. J14, Moscow, Russia, 1991.
[50]  A. I. Golovashkin, A. N. Zherikhin, L. N. Zherikhina, G. V. Kuleshova, and A. M. Tskhovrebov, “Observation of latent coherent effects in randomized systems,” Journal of Experimental and Theoretical Physics, vol. 99, no. 2, pp. 370–378, 2004.
[51]  A. A. Gorbatsevich, V. Y. Kopaev, and I. V. Tokatly, “Stratification and superconducting droplets in high-Tc superconductors,” JETP Letters, vol. 52, p. 95, 1990.
[52]  A. A. Gorbatsevich, V. Y. Kopaev, and I. V. Tokatly, “Band theory of phase stratification,” Journal of Experimental and Theoretical Physics, vol. 74, p. 521, 1992.
[53]  A. A. Gorbatsevich, V. Y. Kopaev, and I. V. Tokatly, “Phase separation and dielectric correlations in HTSC,” Physica C, vol. 223, no. 1-2, pp. 95–105, 1994.
[54]  L. N. Zherikhina, A. I. Golovashkin, A. V. Gudenko, G. V. Kuleshova, A. M. Tskhovrebov, and M. L. Norton, “H-T phase diagram of high-Tc Ba-K-Bi-O,” Physica C, vol. 388-389, pp. 451–452, 2003.
[55]  A. I. Golovashkin, L. N. Zherikhina, G. V. Kuleshova, and A. M. Tshkovrebov, “Magnetic properties of high-Tc system BaKBiO in superconducting state,” in Proceedings of 1st International Conference on Fundamental Problems of High Temperature Superconductivity, p. 139, Zvenigorod, Russia, 2004.
[56]  L. A. Klinkova, M. Uchida, Y. Matsui, V. I. Nikolaichik, and N. V. Barkovskii, “Noncubic layered structure of Ba1-xKxBiO3 superconductor,” Physical Review B, vol. 67, no. 14, Article ID 140501, 2003.
[57]  B. D. Josephson, “Possible new effects in superconductive tunnelling,” Physics Letters, vol. 1, no. 7, pp. 251–253, 1962.
[58]  I. K. Yanson, V. M. Svistunov, and I. M. Dmitrenko, “Experimental observation of the tunnel effect for cooper pairs with the emission of photons,” Journal of Experimental and Theoretical Physics, vol. 21, pp. 650–652, 1965.
[59]  S. Shapiro, A. R. Janus, and S. Holly, “Effect of microwaves on josephson currents in superconducting tunneling,” Reviews of Modern Physics, vol. 36, no. 1, pp. 223–225, 1964.
[60]  K. K. Likharev and B. T. Yl’rik, Sistemy s dzhozefsonovskimi kontaktami (Systems with Josephson Contacts), Izd-vo MGU, Moscow, Russia, 1978.
[61]  H. Kanter and F. L. Vernon Jr., “High-frequency response of Josephson point contacts,” Journal of Applied Physics, vol. 43, no. 7, pp. 3174–3183, 1972.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133