全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Risk of Infectious Disease Outbreaks by Imported Cases with Application to the European Football Championship 2012

DOI: 10.1155/2013/576381

Full-Text   Cite this paper   Add to My Lib

Abstract:

The European Centre for Disease Prevention and Control called the attention in March 2012 to the risk of measles in Ukraine among visitors to the 2012 UEFA European Football Championship. Large populations of supporters travelled to various locations in Poland and Ukraine, depending on the schedule of Euro 2012 and the outcome of the games, possibly carrying the disease from one location to another. In the present study, we propose a novel two-phase multitype branching process model with immigration to describe the risk of a major epidemic in connection with large-scale sports-related mass gathering events. By analytic means, we calculate the expected number and the variance of imported cases and the probability of a major epidemic caused by the imported cases in their home country. Applying our model to the case study of Euro 2012 we demonstrate that the results of the football games can be highly influential to the risk of measles outbreaks in the home countries of supporters. To prevent imported epidemics, it should be emphasized that vaccinating travellers would most efficiently reduce the risk of epidemic, while requiring the minimum doses of vaccines as compared to other vaccination strategies. Our theoretical framework can be applied to other future sport tournaments too. 1. Introduction The European Centre for Disease Prevention and Control reported a measles outbreak in Ukraine with more than 11,000 cases from the beginning of 2012 until the end of June 2012 [1, 2]. The 2012 UEFA European Championship (Euro 2012) took place in Ukraine and Poland between 8 June and 1 July 2012, attracting several hundreds of thousands of football fans to these countries [3]. Susceptible visitors not only had a high risk of being infected, but also geographically propagating the epidemic to other countries. We introduce a discrete time Markov chain model, which is an adaptation of a multitype Galton-Watson process with immigration to give a mathematical model for the evolution of the epidemic. Thus, we calculate the risk of epidemics connected to sports-related mass gathering events. Our model consists of two parts, the first one describing the spread of the disease during the championship in the host country, while the second part models the spread of the disease by fans returning to their home countries. We apply our model to the special case of measles epidemics in Ukraine during the Euro 2012. Four of the eight host cities of this championship are in Ukraine (Kiev, Kharkiv, Lviv and Donetsk); one of these, Lviv, is situated in the western region where the

References

[1]  “Outbreak of measles in Ukraine and potential for spread in the EU, Rapid Risk Assessment,” ECDC, 13 March 2012, http://ecdc.europa.eu/en/publications/Publications/20120314_RA_Measles_Ukraine.pdf.
[2]  “Communicable disease threats report,” ECDC, Week 26, 24–30 June 2012, http://ecdc.europa.eu/en/publications/Publications/CDTR_web_2012_6_28.pdf.
[3]  B. R. Humphreys and S. Prokopowicz, “Assessing the impact of sports mega-events in transition economies: EURO 2012 in Poland and Ukraine,” International Journal of Sport Management and Marketing, vol. 2, no. 5-6, pp. 496–509, 2007.
[4]  “UEFA webpage,” http://www.uefa.com/uefaeuro/season=2012/tournament-calendar/index.html.
[5]  T. Britton, “Stochastic epidemic models: a survey,” Mathematical Biosciences, vol. 225, no. 1, pp. 24–35, 2010.
[6]  M. P. Quine, “The multi-type Galton-Watson process with immigration,” Journal of Applied Probability, vol. 7, no. 2, pp. 411–422, 1970.
[7]  “Bwin,” http://www.bwin.com/Euro2012.
[8]  R. D. Feigin, J. Cherry, G. J. Demmler-Harrison, and S. L. Kaplan, Feigin and Cherry's Textbook of Pediatric Infectious Diseases, Saunders, 6th edition, 2009.
[9]  L'Institut de Veille Sanitaire (InVS), http://www.invs.sante.fr/Dossiers-thematiques/Maladies-infectieuses/Maladies-a-prevention-vaccinale/Rougeole/Points-d-actualites.
[10]  L. Fonteneau, J.-M. Urcun, C. Kerneur et al., “Couverture vaccinale des enfants gs de 11 ans scolariss en CM2, France, 2004-2005,” Bulletin épidémiologique Hebdomadaire, vol. 51-52, pp. 493–497, 2008 (French).
[11]  I. P. du Chatelet, D. Antona, F. Freymuth et al., “Spotlight on measles 2010: update on the ongoing measles outbreak in france, 2008–2010,” Euro Surveillance, vol. 15, no. 36, pp. 1–4, 2010??http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19656.
[12]  I. Bonmarin and D. Lvy-Bruhl, “Measles in France: the epidemiological impact of suboptimal immunisation coverage,” Euro Surveillance, vol. 7, no. 4, p. 322, 2002, http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=322.
[13]  “WHO epidemiological brief,” no. 21, 2012, http://www.euro.who.int/__data/assets/pdf_file/0004/159475/WHO_EPI_Brief_Feb_2012e.pdf.
[14]  R. Strauss, P. Kreidl, M. Muscat et al., “The measles situation in Austria: a rapid risk assessment by an ECDC team and the outcome of an International Meeting in Vienna, Austria,” Euro Surveillance, vol. 13, no. 17, 2008, http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=18852.
[15]  P. Kreidl, P. Buxbaum, F. Santos-O'Connor et al., “2008 European Football Championship—ECDC epidemic intelligence support,” Euro Surveillance, vol. 13, no. 32, 2008, http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=18946.
[16]  K. Khan, S. J. N. McNabb, Z. A. Memish et al., “Infectious disease surveillance and modelling across geographic frontiers and scientific specialties,” The Lancet Infectious Diseases, vol. 12, no. 3, pp. 222–230, 2012.
[17]  WHO, “Reported estimates of MCV coverage,” http://apps.who.int/immunization_monitoring/en/globalsummary/timeseries/tscoveragemcv.htm.
[18]  I. Parent du Chtelet, D. Floret, D. Antona, and D. Lvy-Bruhl, “Measles resurgence in France in 2008, a preliminary report,” Euro Surveillance, vol. 14, no. 6, 2009, http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19118.
[19]  Robert Koch Institut SurvStatRKI, Abfrage der Meldedaten nach Infektionsschutzgesetz (IfSG) ber das Web, http://www3.rki.de/SurvStat/.
[20]  “Resultados de la vigilancia epidemiolgica de las enfermedades transmisibles,” Informe Anual, 2008, http://www.isciii.es/ISCIII/es/contenidos/fd-servicios-cientifico-tecnicos/fd-vigilancias-alertas/fd-enfermedades/Informeanual2008.pdf.
[21]  E. Delaporte, E. Jeannot, P. Sudre, C. A. W. Lazarevic, J. L. Richard, and P. Chastonay, “Measles in Geneva between 2003 and 2010: persistence of measles outbreaks despite high immunisation coverage,” Euro Surveillance, vol. 16, no. 39, 2011, http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19980.
[22]  Editorial team, “Spotlight on measles 2010,” Euro Surveill, vol. 15, no. 17, 2010, http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19559.
[23]  “BC Centre for Disease Control,” http://www.bccdc.ca/resourcematerials/newsandalerts/healthalerts/Before+travelling+ensure+your+measles+vaccination+is+up+to+date.htm.
[24]  “Surveillance report,” European Monthly Measles Monitoring (EMMO) Issue 10, 2012, http://ecdc.europa.eu/en/publications/Publications/1205-SUR-Measles-monthly-monitoring.pdf.
[25]  “Centers for Disease Control and Prevention,” http://wwwnc.cdc.gov/travel/notices/outbreak-notice/measles.htm.
[26]  C. Huoi, J. S. Casalegno, T. Bnet et al., “A report on the large measles outbreak in Lyon, France, 2010 to 2011,” Euro Surveillance, vol. 17, no. 36, 2012http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20264.
[27]  “Measles and rubella monitoring,” Surveillance report, ECDC, 2012, http://www.ecdc.europa.eu/en/publications/Publications/2012Sept_SUR_measles-rubella-monitoring.pdf.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133