全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The LMI Approach for Stabilizing of Linear Stochastic Systems

DOI: 10.1155/2013/281473

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stochastic linear systems subjected both to Markov jumps and to multiplicative white noise are considered. In order to stabilize such type of stochastic systems, the so-called set of generalized discrete-time algebraic Riccati equations has to be solved. The LMI approach for computing the stabilizing symmetric solution (which is in fact the equilibrium point) of this system is studied. We construct a new modification of the standard LMI approach, and we show how to apply the new modification. Computer realizations of all modifications are compared. Numerical experiments are given where the LMI modifications are numerically compared. Based on the experiments the main conclusion is that the new LMI modification is faster than the standard LMI approach. 1. Introduction In this paper we investigate general stochastic algebraic Riccati equations which are related to LQ control models for stochastic linear systems with multiplicative white noise and markovian jumping. We consider a stochastic system described by where is a -dimensional standard Brownian motion with and , defined by a filtered probability space . In addition, , is a right continuous homogeneous Markov chain with the state space the set and the probability transition matrix , , and with , , and if . It is assumed that the and are independent stochastic processes and for all . The state vector is a real vector, denotes the vector of control variables, and is the regulated output vector with components. The matrix coefficients , , , are constant matrices of appropriate dimensions with real elements. The stochastic systems with multiplicative white noise naturally arise in control problems of linear uncertain systems with stochastic uncertainty. It is important for applications to find a stabilizing controller for the above stochastic system (for more details see [1, 2]). For this purpose it is enough to compute the stabilizing solution to the following stochastic generalized Riccati algebraic equations: The concepts of stabilizing solution of the Riccati-type equation (2) and of stabilizability for the triple , where as usual , are defined in a standard way (see [1]). Applying Theorem 4.9 of Dragan and Morozan [2] we deduce that system (2) has a unique stabilizing solution with . The control stabilizes system (1). An e1ective iterative convergent algorithm to compute these stabilizing solutions is presented in [3]. Let us consider the special case of (1) where . The stochastic linear quadratic model studied by Yao et al. in [4] is obtained. In this model the special functional is minimized (see

References

[1]  V. Dragan and T. Morozan, “Stability and robust stabilization to linear stochastic systems described by differential equations with Markovian jumping and multiplicative white noise,” Stochastic Analysis and Applications, vol. 20, no. 1, pp. 33–92, 2002.
[2]  V. Dragan and T. Morozan, “Systems of matrix rational differential equations arising in connection with linear stochastic systems with markovian jumping,” Journal of Differential Equations, vol. 194, no. 1, pp. 1–38, 2003.
[3]  V. Dragan, T. Morozan, and A. M. Stoica, “H2 optimal control for linear stochastic systems,” Automatica, vol. 40, no. 7, pp. 1103–1113, 2004.
[4]  D. D. Yao, S. Zhang, and X. Y. Zhou, “Tracking a financial benchmark using a few assets,” Operations Research, vol. 54, no. 2, pp. 232–246, 2006.
[5]  S. Chen, X. Li, and X. Y. Zhou, “Stochastic linear quadratic regulators with indefinite control weight costs,” SIAM Journal on Control and Optimization, vol. 36, no. 5, pp. 1685–1702, 1998.
[6]  X. Y. Zhou and D. Li, “Continuous-time mean-variance portfolio selection: a stochastic LQ framework,” Applied Mathematics and Optimization, vol. 42, no. 1, pp. 19–33, 2000.
[7]  D. D. Yao, S. Zhang, and X. Y. Zhou, “Stochastic linear-quadratic control via semidefinite programming,” SIAM Journal on Control and Optimization, vol. 40, no. 3, pp. 801–823, 2001.
[8]  O. L. V. Costa and W. L. de Paulo, “Indefinite quadratic with linear costs optimal control of Markov jump with multiplicative noise systems,” Automatica, vol. 43, no. 4, pp. 587–597, 2007.
[9]  O. L. V. Costa and A. D. Oliveira, “Optimal mean-variance control for discrete-time linear systems with Markovian jumps and multiplicative noises,” Automatica, vol. 48, no. 2, pp. 304–315, 2012.
[10]  M. A. Rami, X. Y. Zhou, and J. B. Moore, “Well-posedness and attainability of indefinite stochastic linear quadratic control in infinite time horizon,” Systems and Control Letters, vol. 41, no. 2, pp. 123–133, 2000.
[11]  X. Li, X. Y. Zhou, and M. A. Rami, “Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon,” Journal of Global Optimization, vol. 27, no. 2-3, pp. 149–175, 2003.
[12]  W. Xie, “An equivalent LMI representation of bounded real lemma for continuous-time systems,” Journal of Inequalities and Applications, vol. 2008, Article ID 672905, 2008.
[13]  I. Ivanov and J. Dobreva, “An optimal solution to discrete-time stochastic models with economic applications,” in Proceedings of the 9th International Scientific Conference Management and Engineering, vol. 2, pp. 957–965, Bulgaria, 2011.
[14]  I. Ivanov, “Accelerated LMI solvers for the maximal solution to a set of discrete-time algebraic Riccati equations,” Applied Mathematics E-Notes, vol. 12, pp. 228–238, 2012.
[15]  M. A. Rami and X. Y. Zhou, “Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls,” IEEE Transactions on Automatic Control, vol. 45, no. 6, pp. 1131–1143, 2000.
[16]  M. A. Rami and L. El Ghaoui, “LMI optimization for nonstandard Riccati equations arising in stochastic control,” IEEE Transactions on Automatic Control, vol. 41, no. 11, pp. 1666–1671, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133