全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The BALM Copula

DOI: 10.1155/2013/652364

Full-Text   Cite this paper   Add to My Lib

Abstract:

The class of probability distributions possessing the almost-lack-of-memory property appeared about 20 years ago. It reasonably took place in research and modeling, due to its suitability to represent uncertainty in periodic random environment. Multivariate version of the almost-lack-of-memory property is less known, but it is not less interesting. In this paper we give the copula of the bivariate almost-lack-of-memory (BALM) distributions and discuss some of its properties and applications. An example shows how the Marshal-Olkin distribution can be turned into BALM and what is its copula. 1. Introduction The class of probability distributions called “almost-lack-of-memory (ALM) distributions” was introduced in Chukova and Dimitrov [1] as a counterexample of a characterization problem. Dimitrov and Khalil [2] found a constructive approach considering the waiting time up to the first success for extended in time Bernoulli trials. Similar approach was used in Dimitrov and Kolev [3] in sequences of extended in time and correlated Bernoulli trials. The fact that nonhomogeneous in time Poisson processes with periodic failure rates are uniquely related to the ALM distributions was established in Chukova et al. [4]. It gave impetus to several additional statistical studies on estimations of process parameters (see, e.g., [5, 6] to name a few) of these properties. Best collection of properties of the ALM distributions and related processes can be found in Dimitrov et al. [7]. Meanwhile, Dimitrov et al. [8] extended the ALM property to bivariate case and called the obtained class BALM distributions. For the BALM distributions, a characterization via a specific hyperbolic partial differential equation of order 2 was obtained in Dimitrov et al. [9]. Roy [10] found another interpretation of bivariate lack-of-memory (LM) property and gave a characterization of class of bivariate distributions via survival functions possessing that LM property for all choices of the participating in it four nonnegative arguments. One curious part of the BALM distributions is that the two components of the 2-dimensional vector satisfy the properties characterizing the bivariate exponential distributions with independent components only in the nodes of a rectangular grid in the first quadrant. However, inside the rectangles of that grid any kind of dependence between the two components may hold. In addition, the marginal distributions have periodic failure rates. This picture makes the BALM class attractive for modeling dependences in investment portfolios, financial mathematics, risk

References

[1]  S. Chukova and B. Dimitrov, “On distributions having the almost lack of memory property,” Journal of Applied Probability, vol. 29, no. 3, pp. 691–698, 1992.
[2]  B. Dimitrov and Z. Khalil, “A class of new probability distributions for modelling environmental evolution with periodic behaviour,” Environmetrics, vol. 3, no. 4, pp. 447–464, 1992.
[3]  B. Dimitrov and N. Kolev, “Bernoulli trials: extensions, related probability distributions and modeling powers, mathematics and education in mathematics,” in Proceedings of the 31st Spring Conference of the Union of the Bulgarian Mathematicians (UBM), pp. 15–24, Borovec, Bulgaria, April 2002.
[4]  S. Chukova, B. Dimitrov, and J. Garrido, “Renewal and nonhomogeneous Poisson processes generated by distributions with periodic failure rate,” Statistics and Probability Letters, vol. 17, no. 1, pp. 19–25, 1993.
[5]  R. Helmers, I. Wayan Mangku, and R. Zitikis, “Consistent estimation of the intensity function of a cyclic Poisson process,” Journal of Multivariate Analysis, vol. 84, no. 1, pp. 19–39, 2003.
[6]  R. Helmers, I. W. Mangku, and R. Zitikis, “A non-parametric estimator for the doubly periodic Poisson intensity function,” Statistical Methodology, vol. 4, no. 4, pp. 481–492, 2007.
[7]  B. Dimitrov, S. Chukova, and D. Green Jr., “Probability distributions in periodic random environment and their applications,” SIAM Journal on Applied Mathematics, vol. 57, no. 2, pp. 501–517, 1997.
[8]  B. Dimitrov, S. Chukova, and Z. Khalil, “Bivariate probability distributions similar to exponential,” in Approximation, Probability and Relates Fields, G. Anastassiou and S. Rachev, Eds., pp. 167–178, 1994.
[9]  B. Dimitrov, S. Chukova, and D. Green Jr., “The bivariate probability distributions with periodic failure rate via hyperbolic differential equation,” Dynamics of Continuous, Discrete and Impulsive Systems, vol. 5, pp. 81–92, 1999.
[10]  D. Roy, “On bivariate lack of memory property and a new definition,” Annals of the Institute of Statistical Mathematics, vol. 54, no. 2, pp. 404–410, 2002.
[11]  P. Embrechts, A. McNeil, and D. Strauman, “Correlation and dependence in risk management: properties and pitfalls,” in Risk Management: Value at Risk and Beyond, M. Dempster and H. K. Mohatt, Eds., pp. 176–223, Cambridge University Press, Cambridge, UK, 2002.
[12]  R. Nelsen, An Introduction to Copulas, Springer, New York, NY, USA, 2nd edition, 2006.
[13]  U. Cherubini, E. Luciano, and W. Vecchiato, Copula Methods in Finance, Wiley, Chichester, UK, 2004.
[14]  N. Kolev, U. Dos Anjos, and B. V. D. M. Mendes, “Copulas: a review and recent developments,” Stochastic Models, vol. 22, no. 4, pp. 617–660, 2006.
[15]  B. Dimitrov and E. von Collani, “Contorted uniform and Pareto distributions,” Statistics and Probability Letters, vol. 23, no. 2, pp. 157–164, 1995.
[16]  J. Galambos and S. Kotz, Characterization of Probability Distributions, vol. 675 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1978.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133