Infrared spectroscopy is known to be a useful tool for identifying local structure changes in zeolites. Infrared spectroscopy is often employed to complement X-ray diffraction data. Local structure changes in zeolite CIT-6 and its zeolite beta (*BEA) analogs caused by calcination, altering framework composition, and ion exchange have been identified with mid- and far-infrared spectroscopy. Differences in the local structures of the samples were observed in mid- and far-infrared spectra, including changes in the intratetrahedral asymmetric stretch, the double-ring mode, and the intratetrahedral bending mode regions. The infrared spectra indicate that calcination or acetic acid extraction changed the structure of CIT-6 to that of zeolite beta (*BEA). Zinc ion exchange or the substitution of aluminum into the framework structure of acetic acid extracted samples retained the CIT-6 structure. 1. Introduction Microporous molecular sieves are employed in catalytic, ion exchange and adsorption/separation processes and are, therefore, of scientific and commercial interest [1]. While “zeolite” specifically refers to aluminosilicate microporous molecular sieves, the term is often applied to compounds with similar crystalline structures. Zeolites are remarkable because of their uniform pores (which are less than 2?nm), their channel configuration, and their void space organization. Because of zeolites’ vast application potential, the characterization of chemical composition, structure, and bonding are important, leading to the use of various analytical techniques to obtain such data. Chemical composition of zeolites can be obtained with atomic absorption spectroscopy (AAS), atomic emission spectrometry (ICP-AES), and X-ray fluorescence spectrometry (XRF) [2]. Both 29Si and 27Al nuclear magnetic resonance (NMR) spectroscopies have proven to be valuable tools in understanding local environments surrounding atoms in the lattice. When NMR data are coupled with density functional theory (DFT) calculations, valuable insights into the crystalline structure of zeolites result [3]. X-ray diffraction (XRD) is also widely used to determine crystalline structure of zeolitic materials, and these data permit identification of samples by comparison with XRD results of known samples [4–6]. Vibrational spectroscopy, including both Raman and infrared (IR), is often employed to investigate the chemistry (with probe molecules) and short-range order in zeolites [7–15]. In the 1970s, Flanigen et al. proposed zeolite functional group assignments for the absorption bands between 1250 and
References
[1]
M. E. Davis, “Ordered porous materials for emerging applications,” Nature, vol. 417, no. 6891, pp. 813–821, 2002.
[2]
H. Kosslick and R. Fricke, “Chemical analysis of aluminosilicates, aluminophosphates and related molecular sieves,” in Characterization II, H. Kosslick and R. Fricke, Eds., vol. 5 of Molecular Sieves, pp. 1–66, Springer, Berlin, Germany, 2007.
[3]
G. Valerio, A. Goursot, R. Vetrivel, O. Malkina, V. Malkin, and D. R. Salahub, “Calculation of 29Si and 27Al MAS NMR chemical shifts in zeolite-β using density functional theory: correlation with lattice structure,” Journal of the American Chemical Society, vol. 120, no. 44, pp. 11426–11431, 1998.
[4]
P. Andy and M. E. Davis, “Dehydrogenation of propane over platinum containing CIT-6,” Industrial and Engineering Chemistry, vol. 43, no. 12, pp. 2922–2928, 2004.
[5]
C. Baerlocher and L. B. McCusker, 2009, http://www.iza-structure.org/databases.
[6]
T. Takewaki, L. W. Beck, and M. E. Davis, “Zincosilicate CIT-6: a precursor to a family of *BEA-type molecular sieves,” Journal of Physical Chemistry B, vol. 103, no. 14, pp. 2674–2679, 1999.
[7]
R. Hajjar, Y. Millot, P. P. Man, M. Che, and S. Dzwigaj, “Two kinds of framework Al sites studied in BEA zeolite by X-ray diffraction, Fourier transform infrared spectroscopy, NMR techniques, and V probe,” Journal of Physical Chemistry C, vol. 112, no. 51, pp. 20167–20175, 2008.
[8]
R. W. Stevens Jr., R. V. Siriwardane, and J. Logan, “In situ fourier transform infrared (FTIR) investigation of CO2 adsorption onto zeolite materials,” Energy and Fuels, vol. 22, no. 5, pp. 3070–3079, 2008.
[9]
A. Chowdhury, P. R. Thompson, and S. J. Milne, “TGA-FTIR study of a lead zirconate titanate gel made from a triol-based sol-gel system,” Thermochimica Acta, vol. 475, no. 1-2, pp. 59–64, 2008.
[10]
J. Baltrusaitis, J. Schuttlefield, J. H. Jensen, and V. H. Grassian, “FTIR spectroscopy combined with quantum chemical calculations to investigate adsorbed nitrate on aluminium oxide surfaces in the presence and absence of co-adsorbed water,” Physical Chemistry Chemical Physics, vol. 9, no. 36, pp. 4970–4980, 2007.
[11]
M. May, M. Asomoza, T. Lopez, and R. Gomez, “Precursor aluminum effect in the synthesis of Sol-Gel Si-Al catalysts: FTIR and NMR characterization,” Chemistry of Materials, vol. 9, no. 11, pp. 2395–2399, 1997.
[12]
M. Endregard, D. G. Nicholson, M. St?cker, and B. Beagley, “Cobalticenium ions adsorbed on large-pore aluminophosphate VPI-5 studied by X-ray absorption,13C solid-state NMR and FTIR spectroscopy,” Journal of Materials Chemistry, vol. 5, no. 3, pp. 485–491, 1995.
[13]
J. A. Lercher and A. Jentys, “Infrared and raman spectroscopy for characterizing zeolites,” in Studies in Surface Science and Catalysis, vol. 168, chapter 13, pp. 435–476, 2007.
[14]
E. M. Flanigen, H. Khatami, and H. A. Szymanski, “Infrared structural studies of zeolite frameworks,” in Molecular Sieve Zeolites-I, vol. 101 of Advances in Chemistry, pp. 201–229, 1971.
[15]
E. M. Flanigen, “Zeolite chemistry and catalysis,” in ACS Monograph, J. A. Rabo, Ed., vol. 171, pp. 80–117, ACS, Washington, DC, USA, 1976.
[16]
G. Mestl and H. Knozinger, “Vibrational spectroscopy,” in Handbook of Heterogeneous Catalysis, G. Ertl, H. Knozinger, F. Schuth, and J. Weitkamp, Eds., pp. 932–971, Wiley-VCH, Weinheim, Germany, 2nd edition, 2008.
[17]
M. D. Baker, J. Godber, and G. A. Ozin, “Frequency and intensity considerations in the far-IR spectroscopy of faujasite zeolites: experiment and theory. metal cation vibrational assignments, site locations, and populations,” Journal of the American Chemical Society, vol. 107, no. 11, pp. 3033–3043, 1985.
[18]
J. Godber, M. D. Baker, and G. A. Ozin, “Far-IR spectroscopy of alkali-metal and alkaline-earth cations in faujasite zeolites,” Journal of Physical Chemistry, vol. 93, no. 4, pp. 1409–1421, 1989.
[19]
M. D. Baker, G. A. Ozin, and J. Godber, “Direct probe Fourier transform far-infrared spectroscopy of metal atoms, metal ions and metal clusters in zeolites,” Catalysis reviews, vol. 27, no. 4, pp. 591–651, 1985.
[20]
G. A. Ozin, M. D. Baker, J. Godber, and S. Wu, “Crystal-field effects on the far-infrared cation vibrations of transition metal (2+) ion exchanged faujasite zeolites,” Journal of the American Chemical Society, vol. 107, no. 7, pp. 1995–2000, 1985.
[21]
T. Takewaki, L. W. Beck, and M. E. Davis, “Synthesis of CIT-6, a zincosilicate with the *BEA topology,” Topics in Catalysis, vol. 9, no. 1-2, pp. 35–42, 1999.
[22]
D. P. Serrano, R. Van Grieken, M. E. Davis, J. A. Melero, A. Garcia, and G. Morales, “Mechanism of CIT-6 and VPI-8 crystallization from zincosilicate gels,” Chemistry, vol. 8, no. 22, pp. 5153–5160, 2002.
[23]
M. M. J. Treacy and J. M. Newsam, “Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth,” Nature, vol. 332, no. 6161, pp. 249–251, 1988.
[24]
Z. Huang, J. Su, Y. Guo, X. Su, and L. Teng, “Synthesis of well-crystallized zeolite beta at large scale and its incorporation into polysulfone matrix for gas separation,” Chemical Engineering Communications, vol. 196, no. 9, pp. 969–986, 2009.
[25]
W. Zhang and P. G. Smirniotis, “Dealuminated zeolite-based composite catalysts for reforming of an industrial naphthene-rich feedstock,” Applied Catalysis, vol. 168, no. 1, pp. 113–130, 1998.
[26]
A. Cantin, A. Corma, M. J. Diaz-Cabanas, J. L. Jorda, M. Moliner, and F. Rey, “Synthesis and characterization of the all-silica pure polymorph C and an enriched polymorph B intergrowth of Zeolite Beta,” Angewandte Chemie, vol. 45, no. 47, pp. 8013–8015, 2006.
[27]
S. Shetty, B. S. Kulkarni, D. G. Kanhere, A. Goursot, and S. Pal, “A comparative study of structural, acidic and hydrophobic properties of Sn-BEA with Ti-BEA using periodic density functional theory,” Journal of Physical Chemistry B, vol. 112, no. 9, pp. 2573–2579, 2008.
[28]
M. A. Camblor, A. Corma, and S. Valencia, “Spontaneous nucleation and growth of pure silica zeolite-β free of connectivity defects,” Chemical Communications, no. 20, pp. 2365–2366, 1996.
[29]
G. Busca, M. Vevilacqua, T. Armaroli, and M. Trombetta, “FT-IR studies of internal, external and extra frame work sites of FER, MFI, BEA and MOR type protonic zeolite materials,” Studies in Surface Science and Catalysis A, vol. 142, pp. 975–982, 2002.
[30]
S. Yuvaraj and M. P. Palanichamy, “Characterization of chromium-substituted zeolite BEA,” Bulletin-Chemical Society of Japan, vol. 75, pp. 155–160, 2002.
[31]
C. Bisio, G. Martra, S. Coluccia, and P. Massiani, “FT-IR evidence of two distinct protonic sites in BEA zeolite: consequences on cationic exchange and on acido-basic properties in the presence of cesium,” Journal of Physical Chemistry C, vol. 112, no. 28, pp. 10520–10530, 2008.
[32]
J. P. Marques, I. Gener, P. Ayrault et al., “Infrared spectroscopic study of the acid properties of dealuminated BEA zeolites,” Microporous and Mesoporous Materials, vol. 60, no. 1–3, pp. 251–262, 2003.
[33]
M. P. Fuller and P. R. Griffiths, “Infrared microsampling by diffuse reflectance fourier transform spectrometry,” Applied Spectroscopy, vol. 34, no. 5, pp. 533–539, 1980.
[34]
M. L. Myrick, M. N. Simcock, M. Baranowski, H. Brooke, S. L. Morgan, and J. N. McCutcheon, “The kubelka-munk diffuse reflectance formula revisited,” Applied Spectroscopy Reviews, vol. 46, no. 2, pp. 140–165, 2011.
[35]
J. M. Newsam, M. M. J. Treacy, W. T. Koetsier, and C. B. De Gruyter, “Structural characterization of zeolite beta,” Proceedings of the Royal Society of London A, vol. 420, no. 1859, pp. 375–405, 1988.
[36]
G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons, Chichester, UK, 3rd edition, 1994.
[37]
S. Kinugasa, K. Tanabe, and T. Tamura, 2010, http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.