Slip factor is an important parameter in the hydraulic design of centrifugal pump impeller for handling viscous oils. How to extract the factor from CFD computational results and how flow rate and liquid viscosity to affect it remain unclear. In the present paper, the flip factor was estimated by means of two approaches: one is from the velocity triangles at the impeller outlet and the other is due to the impeller theoretical head of 3D turbulent viscous fluid. The velocity of water and viscous oils in the impeller and volute computed by CFD was validated with LDV measurements at the best efficiency point. The effect of exit blade angle on slip factor was clarified. It was shown that the two approaches result into two different slip factors. The factors are significantly dependent of flow rate; however, the liquid viscosity seems to take less effect on them. Volute is responsible for reduction in tangential velocity of liquid at the outlet of impeller at low flow rates. The slip factor of impeller with large exit blade angle is not sensitive to flow rate. 1. Introduction The performance of centrifugal pump handling water and viscous oils was investigated numerically by using a CFD code FLUENT based on a steady, 3D, and incompressible turbulent flow. The turbulence effect was involved with the standard turbulence model and wall roughness was taken into account with the nonequilibrium wall function in [1]. The effect of liquid viscosity on pump performance was clarified through observing the pump head and hydraulic efficiency as well as hydraulic loss coefficient in terms of flow rate. A comparison of computed and experimental overall performance of the pump was made. It was confirmed that the “sudden-rising head effect” exists and is caused from the high viscosity and certain large surface roughness. The volute results in an increasing influence on the flow around the impeller exit at a low flow rate. Slip factor is one important design parameter for deciding a correct impeller diameter of centrifugal pump. The factor can be obtained theoretically and experimentally. The typical investigations include those conducted by Kasai [2, 3], Sakai and Watanabe [4], Noorbakhsh [5], Whitfield [6], Murata et al. [7], Harada and Senoo [8], Visser et al. [9], von Backstron [10], Hassenpflug [11], Ji et al. [12], Qiu et al. [13], and so on. The slip factor depends on impeller geometry [5, 7, 9, 10, 14], flow rate [2–4, 6, 13, 15], and viscosity of the liquid pumped [16, 17]. Recently, Slip factor is increasingly estimated by using CFD approach [18–22]. Thus it is
References
[1]
W. G. Li, “Effect of exit blade angle, viscosity and roughness in centrifugal pumps investigated by CFD computation,” TASK Quarterly, vol. 15, no. 1, pp. 21–41, 2011.
[2]
T. Kasai, “On the flow conditions at the exit of centrifugal impeller,” Journal of JSME, vol. 37, no. 202, pp. 60–69, 1934.
[3]
T. Kasai, “On the exit velocity and slip coefficient at the outlet of centrifugal impeller with some references to the characteristics of pump,” Transactions of the Japan Society of Mechanical Engineers, vol. 1, no. 3, pp. 234–246, 1935.
[4]
T. Sakai and I. Watanabe, “The slip factor of centrifugal and mixed-flow compressors,” Transactions of the Japan Society of Mechanical Engineers, vol. 33, no. 249, pp. 735–744, 1967.
[5]
A. Noorbakhsh, “Theoretical and real slip factor in centrifugal pumps,” Technical Note 93, von Karman Institute for Fluid Dynamics, 1973.
[6]
A. Whitfield, “Slip factor of a centrifugal compressor and its variation with flow rate,” Proceedings of the Institution of Mechanical Engineers, vol. 188, no. 32, pp. 415–421, 1974.
[7]
S. Murata, T. Ogawa, and M. Gotoh, “On the flow in a centrifugal impeller: 2nd report, effects of change in impeller width,” Bulletin of the JSME, vol. 21, no. 151, pp. 90–97, 1978.
[8]
H. Harada and Y. Senoo, “Equations of the blade loading and the slip factor of a centrifugal impeller,” Transactions of the Japan Society of Mechanical Engineers, Part B, vol. 52, no. 482, pp. 3525–3528, 1986.
[9]
F. C. Visser, J. J. H. Brouwers, and R. Badie, “Theoretical analysis of inertially irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers with equiangular blades,” Journal of Fluid Mechanics, vol. 269, pp. 107–142, 1994.
[10]
T. W. von Backstr?m, “A unified correlation for slip factor in centrifugal impellers,” Journal of Turbomachinery, vol. 128, no. 1, pp. 1–10, 2006.
[11]
W. C. Hassenpflug, “The incompressible two-dimensional potential flow through blades of a rotating radial impeller,” Mathematical and Computer Modelling, vol. 52, no. 9-10, pp. 1299–1389, 2010.
[12]
C. Ji, J. Zou, X. D. Ruan, P. Dario, and X. Fu, “A new correlation for slip factor in radial and mixed-flow impellers,” Proceedings of the Institution of Mechanical Engineers, Part A, vol. 225, no. 1, pp. 114–119, 2011.
[13]
X. Qiu, D. Japikse, J. Zhao, and M. R. Anderson, “Analysis and validation of a unified slip factor model for impellers at design and off-design conditions,” Journal of Turbomachinery, vol. 133, no. 4, Article ID 041018, 2011.
[14]
F. J. Wiesner, “A review of slip factors for centrifugal impellers,” Journal of Engineering for Power, vol. 89, no. 4, pp. 558–572, 1967.
[15]
Y. Sakamoto, “Slip factor dependence on flow rate in centrifugal compressors,” Transactions of the Japan Society of Mechanical Engineers, Part B, vol. 49, no. 446, pp. 2242–2247, 1983.
[16]
T. Toyokura, J. Kurokawa, and T. Kanemoto, “Performance improvement for centrifugal pump handling high viscosity oil,” Turbomachinery, vol. 7, no. 2, pp. 72–79, 1979.
[17]
H. Ohta, “Effect of reynolds number on slip factor of centrifugal pump for high-viscosity liquids,” Transactions of the Japan Society of Mechanical Engineers, Part B, vol. 65, no. 639, pp. 3697–3704, 1999.
[18]
E.-M. Guo and K.-Y. Kim, “Three-dimensional flow analysis and improvement of slip factor model for forward-curved blades centrifugal fan,” KSME International Journal, vol. 18, no. 2, pp. 302–312, 2004.
[19]
J. A. Caridad and F. Kenyery, “Slip factor for centrifugal impellers under single and two-phase flow conditions,” Journal of Fluids Engineering, vol. 127, no. 2, pp. 317–321, 2005.
[20]
Y. Nishi, N. Matsuo, and J. Fukutomi, “Loss analysis of a new type of sewage pump,” Journal of Environment and Engineering, vol. 4, no. 2, pp. 362–374, 2009.
[21]
H. A. Elsheshtawy, “Numerical study of slip factor in centrifugal pumps ad study factors affecting its performance,” in Proceedings of the 1st International Conference on Mechanical Engineering and Material Science, pp. 103–106, 2012.
[22]
J. M. Huang, K. W. Luo, C. F. Chen, et al., “Numerical investigations of slip phenomena in centrifugal impellers,” International Journal of Turbo & Jet-Engines, vol. 30, no. 1, pp. 123–132, 2013.
[23]
J. P. Veres, “Centrifugal and axial pump design and off-design performance prediction,” NASA Technical Memorandum 106745, 1994.
[24]
Y.-D. Choi, J. Kurokawa, and J. Malsui, “Performance and internal flow characteristics of a very low specific speed centrifugal pump,” Journal of Fluids Engineering, vol. 128, no. 2, pp. 341–349, 2006.
[25]
C. E. Brennen, Hydrodynamics of Pumps, Oxford University Press, Oxford, UK, 1994.
[26]
W. G. Li and Z. M. Hu, “Experiments on the performance of centrifugal oil pump,” Chinese Fluid Machinery, vol. 25, no. 2, pp. 3–8, 1996.
[27]
W.-G. Li, “Effects of viscosity of fluids on centrifugal pump performance and flow pattern in the impeller,” International Journal of Heat and Fluid Flow, vol. 21, no. 2, pp. 207–212, 2000.
[28]
W.-G. Li, “Flow of viscous oil in the volute of a centrifugal pump,” Journal of Thermal Science, vol. 11, no. 1, pp. 10–15, 2002.
[29]
S. Lazarkiewicz and A. T. Troskolanski, Impeller Pumps, Pergamon Press, Oxford, UK, 1965.
[30]
A. J. Acosta and A. Hollander, “Observations on the performance of centrifugal pumps at low Reynolds numbers,” in Proceedings of the Symposium on Pump Design, Testing and Operation, Glasgow, UK, 1965.
[31]
J. F. Peck, “Investigation concerning flow conditions in a centrifugal pump and effect of blade loading on head slip,” Proceedings of Institution of Mechanical Engineers, vol. 164, no. 1, pp. 1–30, 1951.
[32]
J. F. Gulich, Centrifugal Pumps, Springer, Heidelberg, Germany, 2010.
[33]
J. Kurokawa and S. Hode, “Prediction of outlet flow characteristics of centrifugal impellers,” Bulletin of the JSME, vol. 28, no. 241, pp. 1423–1429, 1985.