全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Dynamic Center Region on the Flow and Mixing Efficiency in a New Tri-Screw Extruder Using 3D Finite Element Modeling

DOI: 10.1155/2013/258197

Full-Text   Cite this paper   Add to My Lib

Abstract:

Three-dimensional finite element modeling of polymer melt flowing in a new co-rotating tri-screw extruder was established with mesh superposition technique. Based on the particle tracking technology, three typical particle trajectories in the tri-screw extruder were calculated using a 4th-order-Runge-Kutta method to study the dynamic motions of the particles. Then the flow visualizations in the local center region were carried out. Moreover, the dispersive, distributive and stretching mixing efficiencies of the tri-screw and twin-screw extruders were compared, respectively. The results show that when the particles move from one screw to another, there are great abrupt changes in the velocities and displacements, which induce the abrupt change in the stress magnitude. Most of particles, which are initially distributed in the inlet plane of the center region, fast flow out the outlet and don’t pass through any screw. This special phenomenon induces a series of new characteristics in the residence time distribution (RTD), flow number, segregation scale and time averaged efficiency. In comparison with the twin-screw extruder, the tri-screw extruder has better mixing efficiency. 1. Introduction Screw extruders are mostly used as pumping and mixing devices in polymer processing such as injection or blow molding. Their mixing efficiency and uniformity significantly affect the properties of the final product, energy consumption and costs. With the development of polymer industry, it is necessary to devise a new type of extrusion equipment with high output and better mixing efficiency. Based on the traditional single-and twin-screw extruders, a new type of triangle arranged tri-screw extruder (hereinafter referred to as tri-screw extruder) is put forward, which has three intermeshing regions and one dynamic center region [1]. Recently, the tri-screw extruder has been paid more and more attention due to its high mixing ability and output. However, as a new mixing setup for polymer processing, the complex modeling and computational simulation of the tri-screw extruder still remain very challenging, especially for the special dynamic center region with period changes of areas and geometric shapes. The mixing efficiency of the tri-screw extruder depends on its flow profiles, especially axial flow. The dynamic and period changes of areas and geometric shapes of the center region cause the local variations in the axial flow, which can affect the local and overall mixing efficiencies of the tri-screw extruder. With the recent advances in computational fluid dynamics,

References

[1]  N. Jiang and C. W. Zhu, “Analysis of mixing performance in a triple screw extruder,” China Plastics, vol. 15, pp. 87–91, 2001.
[2]  M. Kurte-Jardin, H. Potente, K. Sigge, and M. Bornemann, “Modeling the temperature development of wall-slipping polymers in single-screw channels,” International Polymer Processing, vol. 24, no. 2, pp. 106–113, 2009.
[3]  P. A. Moysey and M. R. Thompson, “Investigation of solids transport in a single-screw extruder using a 3-D discrete particle simulation,” Polymer Engineering and Science, vol. 44, no. 12, pp. 2203–2215, 2004.
[4]  R. K. Connelly and J. L. Kokini, “Examination of the mixing ability of single and twin screw mixers using 2D finite element method simulation with particle tracking,” Journal of Food Engineering, vol. 79, no. 3, pp. 956–969, 2007.
[5]  A. Khalifeh and J. R. Clermont, “Numerical simulations of non-isothermal three-dimensional flows in an extruder by a finite-volume method,” Journal of Non-Newtonian Fluid Mechanics, vol. 126, no. 1, pp. 7–22, 2005.
[6]  J. F. Hétu and F. Ilinca, “Immersed boundary finite elements for 3D flow simulations in twin-screw extruders,” Computers & Fluids, 2012.
[7]  S. Ahmed Salahudeen, R. H. Elleithy, O. AlOthman, and S. M. AlZahrani, “Comparative study of internal batch mixer such as cam, banbury and roller: numerical simulation and experimental verification,” Chemical Engineering Science, vol. 66, no. 12, pp. 2502–2511, 2011.
[8]  H. Chen, U. Sundararaj, K. Nandakumar, and M. D. Wetzel, “On-line visualization of PS/PP melting mechanisms in a co-rotating twin screw extruder,” International Polymer Processing, vol. 19, no. 4, pp. 342–349, 2004.
[9]  M. Brito-Bazan, L. Fradette, and P. A. Tanguy, “Experimental flow visualization and residence time distributions in a co-kneader,” International Polymer Processing, vol. 27, no. 4, pp. 414–426, 2012.
[10]  D. D. Hu and J. N. Chen, “Simulation of polymer melt flow fields in intermeshing co-rotating three-screw extruders,” Journal of Beijing Institute of Technology, vol. 15, no. 3, pp. 360–365, 2006.
[11]  N. Jiang and C. Zhu, “Study on extrusion characteristics of the tri-screw extruder,” Polymer-Plastics Technology and Engineering, vol. 47, no. 6, pp. 590–594, 2008.
[12]  X. Z. Zhu, Y. J. Xie, and H. Q. Yuan, “Numerical simulation of extrusion characteristics for co-rotating tri-screw extruder,” Polymer-Plastics Technology and Engineering, vol. 46, no. 4, pp. 401–407, 2007.
[13]  X. Z. Zhu, Y. J. Xie, and Y. Miao, “Numerical study on temperature and power consumption of intermeshing co-rotation triangle arrayed tri-screw extruders,” Polymer-Plastics Technology and Engineering, vol. 48, no. 4, pp. 367–373, 2009.
[14]  G. Wang, X. Z. Zhu, Y. D. He, and L. Chen, “Effects of screw clearance and blend ratio on the flow and mixing characteristics of tri-screw extruders in the cross section with CFD,” Engineering Applications of Computational Fluid Mechanics, vol. 7, no. 1, pp. 74–89, 2013.
[15]  Polyflow, Release 13.0 ANSYS Inc., 2010.
[16]  K. Yasuda, R. C. Armstrong, and R. E. Cohen, “Shear flow properties of concentrated solutions of linear and star branched polystyrenes,” Rheologica Acta, vol. 20, no. 2, pp. 163–178, 1981.
[17]  J. Gao, G. C. Walsh, D. Bigio, R. M. Briber, and M. D. Wetzel, “Residence-time distribution model for twin-screw extruders,” AIChE Journal, vol. 45, no. 12, pp. 2541–2549, 1999.
[18]  I. Manas-Zloczower, “Studies of mixing efficiency in batch and continuous mixers,” Rubber Chemistry and Technology, vol. 67, no. 3, pp. 504–528, 1994.
[19]  J. M. Ottino, W. E. Ranz, and C. W. Macosko, “A framework for the description of mechanical mixing of fluids,” AIChE Journal, vol. 27, no. 4, pp. 565–577, 1981.
[20]  I. Manas-Zloczower, “Analysis of mixing in polymer processing equipment,” Rheology Bulletin, vol. 66, pp. 5–8, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133