Controlled Cohort Study of Serum Gonadal and Adrenocortical Steroid Levels in Males Prior to Onset of Rheumatoid Arthritis (pre-RA): A Comparison to pre-RA Females and Sex Differences among the Study Groups
Serum testosterone levels are generally reported to be lower in male rheumatoid arthritis (RA) patients, but it is not determined if a deficiency may occur before clinical onset of disease (pre-RA). Lower testosterone levels were recently reported in males many years before RA onset but were predictive only of rheumatoid factor (RF)—negative disease. A preceding prospective study did not reveal androgenic-anabolic hormone association with risk of RA in men or women. This cohort study of males analyzed baseline serum levels of gonadal and adrenocortical steroids, luteinizing hormone, and prolactin in 18 pre-RA versus 72 matched non-RA control (CN) subjects. Findings in males were compared to those in female pre-RA and CN subjects in the same cohort, and sex differences were analyzed. Steroidal and hormonal levels, including total testosterone, were similar between male study groups. In females, mean (±SE) serum androstenedione (nmol/L) was slightly ( ) lower in 36 pre-RA (6.7 ± 0.36) than 144 CN (7.6 ± 0.22). With the exception of 3 partial correlations of hormonal variables observed to differ between pre-RA versus CN subjects, the patterns were similar overall. However, partial correlations of hormonal variables differed frequently by sex, both within and between study groups. 1. Introduction The onset of rheumatoid arthritis (RA) occurs about 5-fold more frequently in women of child-bearing ages than among male counterparts [1]. Early age at menopause (≤45?yrs) was recently found to be associated with the subsequent risk of developing RA [2]. Such findings suggest that sex hormones may influence predisposition to this disease in women. In male RA patients with active disease, testosterone levels are reported to be lower than those in healthy control (CN) subjects [3, 4]. However, it is not known if such hormonal alteration results from inflammatory manifestations of active clinical disease or if it may be a preexisting risk factor before clinical onset (pre-RA). Recently, testosterone levels were reported to be lower in males many years before RA onset, as identified in a large Swedish cohort [5]. However, a significant association of lower testosterone levels was predictive only for the minority subset of patients having negative rheumatoid factor (RF-negative) disease [5]. A preceding retrospective case-control nested study within a large Finnish cohort did not find baseline serum total testosterone or dehydroepiandrosterone sulfate (DHEAS) levels to be predictive of the subsequent onset of RA, either in 32-male or in 84-female cases [6]. Our
References
[1]
A. T. Masi, “Incidence of rheumatoid arthritis: do the observed age-sex interaction patterns support a role of androgenic-anabolic steroid deficiency in its pathogenesis?” British Journal of Rheumatology, vol. 33, no. 8, pp. 697–699, 1994.
[2]
M. Pikwer, U. Bergstr?m, J. A. Nilsson, L. Jacobsson, and C. Turesson, “Early menopause is an independent predictor of rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 71, no. 3, pp. 378–381, 2012.
[3]
M. Cutolo, E. Balleari, M. Giusti, M. Monachesi, and S. Accardo, “Sex hormone status of male patients with rheumatoid arthritis: evidence of low serum concentrations of testosterone at baseline and after human chorionic gonadotropin stimulation,” Arthritis & Rheumatism, vol. 31, no. 10, pp. 1314–1317, 1988.
[4]
B. Tengstrand, K. Carlstr?m, and I. Hafstr?m, “Gonadal hormones in men with rheumatoid arthritis—from onset through 2 years,” Journal of Rheumatology, vol. 36, no. 5, pp. 887–892, 2009.
[5]
M. Pikwer, A. Giwercman, U. Bergstr?m, J. A. Nilsson, L. T. Jacobsson, and C. Turesson, “Association between testosterone levels and risk of future rheumatoid Arthritis in men: a population-based case-control study,” Annals of the Rheumatic Diseases, 2013.
[6]
R. Heikkil?, K. Aho, M. Heli?vaara et al., “Serum androgen-anabolic hormones and the risk of rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 57, pp. 281–285, 1998.
[7]
A. T. Masi, J. C. Aldag, and R. T. Chatterton, “Sex hormones and risks of rheumatoid arthritis and developmental or environmental influences,” Annals of the New York Academy of Sciences, vol. 1069, pp. 223–235, 2006.
[8]
M. Cutolo, L. Foppiani, C. Prete et al., “Hypothalamic-pituitary-adrenocortical axis function in premenopausal women with rheumatoid arthritis not treated with glucocorticoids,” Journal of Rheumatology, vol. 26, no. 2, pp. 282–288, 1999.
[9]
A. T. Masi, A. A. Rehman, K. B. Elmore, and J. C. Aldag, “Serum acute phase protein and inflammatory cytokine network correlations: comparison of a pre-rheumatoid arthritis and non-rheumatoid arthritis community cohort,” Journal of Innate Immunity, vol. 5, pp. 100–113, 2013.
[10]
A. T. Masi and H. J. Chang, “Cigarette smoking and otheracquired risk factors for rheumatoid arthritis,” in RheumaticDisease and the Environment, L. D. Kaufman and J. Varga, Eds., pp. 111–127, Chapman & Hall, New York, NY, USA, 1998.
[11]
L. Klareskog, V. Malmstr?m, K. Lundberg, L. Padyukov, and L. Alfredsson, “Smoking, citrullination and genetic variability in the immunopathogenesis of rheumatoid arthritis,” Seminars in Immunology, vol. 23, article 2, pp. 92–98, 2011.
[12]
E. W. Karlson, L. B. Chibnik, M. McGrath et al., “A prospective study of androgen levels, hormone-related genes and risk of rheumatoid arthritis,” Arthritis Research and Therapy, vol. 11, no. 3, article R97, 2009.
[13]
A. T. Masi, K. B. Elmore, A. A. Rehman, R. T. Chatterton, N. J. Goertzen, and J. C. Aldag, “Lowerserum androstenedione levels in pre-rheumatoid arthritis versus normal control women: correlations with lower serum cortisol levels,” Autoimmune Diseases, vol. 2013, Article ID 593493, 13 pages, 2013.
[14]
K. J. Helzlsouer, A. J. Alberg, G. B. Gordon et al., “Serum gonadotropins and steroid hormones and the development of ovarian cancer,” Journal of the American Medical Association, vol. 274, no. 24, pp. 1926–1930, 1995.
[15]
N. Rothman, K. P. Cantor, A. Blair et al., “A nested case-control study of non-Hodgkin lymphoma and serum organochlorine residues,” The Lancet, vol. 350, no. 9073, pp. 240–244, 1997.
[16]
A. J. Alberg, G. B. Gordon, S. C. Hoffman, G. W. Comstock, and K. J. Helzlsouer, “Serum dehydroepiandrosterone and dehydroepiandrosterone sulfate and the subsequent risk of developing colon cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 5, pp. 517–521, 2000.
[17]
D. M. Gerlag, K. Raza, L. G. M. Van Baarsen et al., “EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis,” Annals of the Rheumatic Diseases, vol. 71, no. 5, pp. 638–641, 2012.
[18]
F. C. Arnett, S. M. Edworthy, D. A. Bloch et al., “The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis,” Arthritis & Rheumatism, vol. 31, no. 3, pp. 315–324, 1988.
[19]
K. T. J?rgensen, A. Wiik, M. Pedersen et al., “Cytokines, autoantibodies and viral antibodies in premorbid and postdiagnostic sera from patients with rheumatoid arthritis: case-control study nested in a cohort of Norwegian blood donors,” Annals of the Rheumatic Diseases, vol. 67, no. 6, pp. 860–866, 2008.
[20]
R. T. Chatterton, P. D. Hill, J. C. Aldag, K. R. Hodges, S. M. Belknap, and M. J. Zinaman, “Relation of plasma oxytocin and prolactin concentrations to milk production in mothers of preterm infants: influence of stress,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 10, pp. 3661–3668, 2000.
[21]
M. E. Turyk, H. A. Anderson, S. Freels et al., “Associations of organochlorines with endogenous hormones in male Great Lakes fish consumers and nonconsumers,” Environmental Research, vol. 102, no. 3, pp. 299–307, 2006.
[22]
B. D. Rubin, Multiple Imputation for Nonresponse in Surveys, John Wiley & Sons, New York, NY, USA, 1987.
[23]
J. L. Schafer, “Multiple imputation: a primer,” Statistical Methods in Medical Research, vol. 8, no. 1, pp. 3–15, 1999.
[24]
SAS Institute, SAS/STAT 9.2 User’s Guide, SAS Institute, Cary, NC, USA, 2nd edition, 2009, http://support.sas.com/documentation/cdl/en/statug/63033/PDF/default/statug.pdf.
[25]
IBM SPSS, “IBM SPSS,” Chicago, Ill, USA, 2012.
[26]
G. B. Phillips, “Relationship between serum sex hormones and the glucose-insulin-lipid defect in men with obesity,” Metabolism, vol. 42, no. 1, pp. 116–120, 1993.
[27]
M. C. Amato, M. Verghi, M. Nucera, A. Galluzzo, and C. Giordano, “Low estradiol-to-testosterone ratio is associated with oligo-anovulatory cycles and atherogenic lipidic pattern in women with polycystic ovary syndrome,” Gynecological Endocrinology, vol. 27, no. 8, pp. 579–586, 2011.
[28]
A. T. Masi and J. C. Aldag, “Integrated neuroendocrine immune risk factors in relation to rheumatoid arthritis: should rheumatologists now adopt a model of a multiyear, presymptomatic phase?” Scandinavian Journal of Rheumatology, vol. 34, no. 5, pp. 342–352, 2005.
[29]
A. T. Masi, J. C. Aldag, R. T. Chatterton, M. Teodorescu, R. L. Malamet, G. W. Comstock, et al., “Independent risk markers (RMs) for RA onset in males include: Rheumatoid arthritis in a first degree relative (FDR +), rheumatoid factor (RF+), combined low serum cortisol and testosterone (low C&T), and heavy cigarette smoking (CS 30+/d),” Arthritis & Rheumatism, vol. 43, supplement, p. S73, 2000.
[30]
W. J. Dixon and J. W. Tukey, “Approximate behavior of the distribution of Winsorized t (Trimming/Winsorization 2),” vol. 1, pp. 83–98, 1968.
[31]
B. Rosner, Fundamentals of Biostatistics, PWS-Kent Publishing, Boston, Mass, USA, 3rd edition, 1990.
[32]
R. Lowry, “Significance of the difference between two correlation coefficients,” 2001–2013http://www.vassarstats.net/rdiff.html.
[33]
K. J. Rothman, “No adjustments are needed for multiple comparisons,” Epidemiology, vol. 1, no. 1, pp. 43–46, 1990.
[34]
A. T. Masi, K. B. Elmore, A. A. Rehman, J. C. Aldag, and R. T. Chatterton, “Pre-rheumatoid arthritis (pre-RA) subjects had a minority excess with clearly low serum cortisol levels and females had a lower mean androstenedione levels than control (CN) cohorts in analysis of a large panel of serum steroids and pituitary hormones,” Arthritis & Rheumatism, vol. 64, supplement, p. S27, 2012.