Changes of CD4+ CD25+ Regulatory T Cells, FoxP3 in Adjuvant Arthritis Rats with Damage of Pulmonary Function and Effects of Tripterygium Glycosides Tablet
Objective. To observe the effects of tripterygium glycosides tablet (TPT) on swelling degree, arthritis index (AI), pulmonary function, cytokines, the expression of regulatory T cells (Treg), and Foxp3 in rats of adjuvant arthritis. Methods. Rats were averagely divided into normal control (NC) group, model control (MC) group, methotrexate (MTX) group, and tripterygium glycosides tablet (TPT) group. Except for the rats of normal group, the others were intracutaneously injected with 0.1?mL of Freund’s complete adjuvant in the right hindlimb. NC group and MC group were treated with physiological saline. MTX group and TPT group were treated with MTX, TPT, respectively. Results. The levels of swelling degree, AI, the alveolar inflammation integral, TNF alpha (TNF- ), and endothelium-1 (ET-1 ) in MC group were significantly increased ( ), and the levels of forced vital capacity (FVC), 25% vital capacity of the peak expiratory flow (FEF25), 50% vital capacity of the peak expiratory flow (FEF50), 75% vital capacity of the peak expiratory flow (FEF75), maximum midexpiratory flow (MMF), peak expiratory flow (PEF), interleukin-10 (IL-10), CD4+ CD25+ Treg, and Foxp3 were decreased ( ). The scores of alveolitis and ET-1 were decreased with treatment of TPT. The levels of FVC, FEF25, FEF50, FEF75, MMF, PEF, IL-10, and CD4+ CD25+ Treg in peripheral blood were increased. The expressions of Foxp3 protein and mRNA in lung tissue were also increased in TPT group. Conclusions. The paw swelling can be inhibited by TPT, and the inflammatory response in lung tissue was also decreased, which is a significant improvement in pulmonary function. The mechanism is probably associated with upregulating the expression of IL-10, Foxp3, and downregulating the level of TNF- . 1. Introduction Rheumatoid arthritis (RA) is an autoimmune arthritis affecting joints mainly, chronic inflammatory, along with many other tissues and organs. RA is an inflammatory disorder that principally attacks synovial joints. The process produces an inflammatory response of the synovitis secondary to hyperplasia of synovial cells, excess synovial fluid, and the development of pannus in the synovium. The pathology of the disease process often leads to the destruction of articular cartilage and ankylosis of the joints. Rheumatoid arthritis can also produce diffuse inflammation in the lungs. Owing to the lung tissue has redundant connective tissue and the close relation with blood vessels, and also has a link-intensive cycle system, the lung is one of the primary target organs. Interstitial lung disease (ILD) is
References
[1]
S. Froidevaux-Janin, “Interstitial lung disease in rheumatoid arthritis,” Revue Medicale Suisse, vol. 7, no. 318, pp. 2272–2277, 2011.
[2]
H. Furukawa, S. Oka, K. Shimada et al., “Association of human leukocyte antigen with interstitial lung disease in rheumatoid arthritis: a protective role for shared epitope,” PLoS ONE, vol. 7, no. 5, Article ID e33133, 2012.
[3]
A. Picchianti-Diamanti, V. Germano, and E. Bizzi, “Interstitial lung disease in rheumatoid arthritis in the era of biologics,” Pulmonary Medicine, vol. 2011, Article ID 931342, 5 pages, 2011.
[4]
M. Toyoshima, K. Chida, and M. Sato, “Methotrexate might increase mortality from interstitial lung disease in rheumatoid arthritis,” American Journal of Respiratory and Critical Care Medicine, vol. 185, no. 9, p. 1024, 1024.
[5]
A. G. Junk, D. Davidsen, and H. Grandal, “Prevalence of Pulmonary in-volvement in arthritis rheumatois and ists relationship to some character istics of the patients. A radiological and clinical study,” Scandinavian Journal of Rheumatology, vol. 11, pp. 217–222, 1982.
[6]
L. Wan and J. Liu, “Pathogenesis and TCM treatment of rheumatoid arthritis 1ung disease,” Chin Jo Pract Modern Med, vol. 22, no. 6, pp. 322–324, 2009.
[7]
J. F. Bach, “Regulatory T cells under scrutiny,” Nature Reviews Immunology, vol. 3, no. 3, pp. 189–198, 2003.
[8]
S. Y. Xu, R. L. Bian, and X. Chen, Pharmacological Experimental Methodology, The People's Medical Publishing House, Beijing, China, 3rd edition, 2002.
[9]
J. Zhang, Modern Pharmacology Experiment Methods, Beijing Medical College and Beijing Union Medical College Joint Publishing House, Beijing, China, 1998.
[10]
S. V. Szapiel, N. A. Elson, and J. D. Fulmer, “Bleomycin-induced interstitial pulmonary disease in the nude, athymic mouse,” American Review of Respiratory Disease, vol. 120, no. 4, pp. 893–899, 1979.
[11]
J. Liu, L. Wan, and C. J. Sheng, “Studies on the relationship between pulmonary function changes with Foxp3, TGF-β1/Smads signal transduction pathway in aajuvant arthritis rat,” Chinese Journal of Immunology, vol. 26, no. 3, pp. 258–263, 2010.
[12]
Q. B. Wang, J. Liu, and L. Wan, “Detection of regulatory CD4+ CD25+CD127-T cells in asthma patients and its clinical significanc,” Journal of Anhui Medical, vol. 31, no. 2, pp. 131–134, 2010.
[13]
S. F. Ziegler, “FOXP3: of mice and men,” Annual Review of Immunology, vol. 24, pp. 209–226, 2006.
[14]
S. L. Prescott and J. A. Dunstan, “Immune dysregulation in allergic respiratory disease: the role of T regulatory cells,” Pulmonary Pharmacology and Therapeutics, vol. 18, no. 3, pp. 217–228, 2005.
[15]
M. Edinger and P. Hoffmann, “Regulatory T cells in stem cell transplantation: strategies and first clinical experiences,” Current Opinion in Immunology, vol. 23, no. 5, pp. 679–684, 2011.
[16]
J. M. Michels-Van Amelsfort, G. J. Walter, and L. S. Taams, “CD4+CD25+ regulatory T cells in systemic sclerosis and other rheumatic diseases,” Expert Review of Clinical Immunology, vol. 7, no. 4, pp. 499–514, 2011.
[17]
G. Ojeda, E. Pini, C. Eguiluz et al., “Complement regulatory protein Crry/p65 costimulation expands natural treg cells with enhanced suppressive properties in proteoglycan-induced arthritis,” Arthritis and Rheumatism, vol. 63, no. 6, pp. 1562–1572, 2011.
[18]
S. P. Jiang, R. Y. Liang, and L. Yang, “Efects of triptolide on serum cytokine levels,symptoms and pulmonary function in patients with steroid-resistant asthma,” Chinese Journal of Pathophysiology, vol. 22, no. 8, pp. 1571–1577, 2006.
[19]
J. Rojas-Serrano, E. González-Velásquez, M. Mejía, A. Sánchez-Rodríguez, and G. Carrillo, “Interstitial lung disease related to rheumatoid arthritis: evolution after treatment,” Reumatologia Clinica, vol. 8, no. 2, pp. 68–71, 2012.
[20]
M. Kuroki, Y. Noguchi, M. Shimono et al., “Repression of bleomycin-induced pneumopathy by TNF-α,” Journal of Immunology, vol. 170, no. 1, pp. 567–574, 2003.
[21]
X.-G. Wang, M. Wang, S. Liu et al., “Effect of cyclosporins on regulatory T cells and Foxp3 in the peripheral blood of children with chronic aplastic anemia,” Chinese Journal of Contemporary Pediatrics, vol. 13, no. 12, pp. 936–939, 2011.
[22]
R. L. Kradin, H. Sakamoto, F. Jain, L. H. Zhao, G. Hymowitz, and F. Preffer, “IL-10 inhibits inflammation but does not affect fibrosis in the pulmonary response to bleomycin,” Experimental and Molecular Pathology, vol. 76, no. 3, pp. 205–211, 2004.
[23]
H. Shirasaki, E. Kanaizumi, N. Seki, et al., “Correlation of local FOXP3-expressing T cells and Th1-Th2 balance in perennial allergic nasal mucosa,” International Journal of Otolaryngology, vol. 2011, Article ID 259867, 6 pages, 2011.
[24]
J. G. Xu and L. S. Chen, “Research progress in heterogeneity of human CD4+Foxp3+T cells,” Journal of Experimental Hematology, vol. 19, no. 6, pp. 1528–1531, 2011.
[25]
W. Lou, Y. Wang, and D. Han, “Responses of CD4+ CD25+ Foxp3+ and IL-10-secreting type I T regulatory cells to cluster-specific immunotherapy for allergic rhinitis in children.,” Pediatric allergy and immunology, vol. 23, no. 2, pp. 140–149, 2012.
[26]
S. Narayan, L. Kolly, A. So, and N. Busso, “Increased interleukin-10 production by ASC-deficient CD4+ T cells impairs bystander T-cell proliferation,” Immunology, vol. 134, no. 1, pp. 33–40, 2011.
[27]
X. He, X. Li, B. Liu, L. Xu, H. Zhao, and A. Lu, “Down-regulation of Treg cells and up-regulation of Th1/Th2 cytokine ratio were induced by polysaccharide from Radix Glycyrrhizae in H22 hepatocarcinoma bearing mice,” Molecules, vol. 16, no. 10, pp. 8343–8352, 2011.
[28]
S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003.
[29]
A. Okamoto, K. Fujio, T. Okamura, and K. Yamamoto, “Regulatory t-cell-associated cytokines in systemic lupus erythematosus,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 463412, 2011.
[30]
A. Schmidt, N. Oberle, and P. H. Krammer, “Molecular mechanisms of treg-mediated T cell suppression,” Frontiers in Immunology, vol. 3, p. 51, 2012.
[31]
K. Fujio, T. Okamura, and S. Sumitomo, “Regulatory T cell-mediated control of autoantibody induced inflammation,” Frontiers in Immunology, vol. 3, p. 28, 2012.
[32]
V. Xavier, S. Geoffrey, and E. Peyer, “TNF-α down modulates the funetion of human CD4+ Tregulatoryeells,” Blood, vol. 108, no. 1, pp. 253–261, 2006.
[33]
G.-Y. Wang, Q. Zhang, Y. Yang et al., “Rapamycin combined with allogenic immature dendritic cells selectively expands CD4+CD25+Foxp3+ regulatory T cells in rats,” Hepatobiliary and Pancreatic Diseases International, vol. 11, no. 2, pp. 203–208, 2012.
[34]
M. M. Coleman, C. M. Finlay, B. Moran, J. Keane, and P. J. Dunne, “The immunoregulatory role of CD4+FoxP3+CD25- regulatory T cells in lungs of mice infected with Bordetella pertussis,” FEMS Immunology and Medical Microbiology, vol. 64, no. 3, pp. 413–424, 2012.