全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Configurable Transmitter and Systolic Channel Estimator Architectures for Data-Dependent Superimposed Training Communications Systems

DOI: 10.1155/2012/236372

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, a configurable superimposed training (ST)/data-dependent ST (DDST) transmitter and architecture based on array processors (APs) for DDST channel estimation are presented. Both architectures, designed under full-hardware paradigm, were described using Verilog HDL, targeted in Xilinx Virtex-5 and they were compared with existent approaches. The synthesis results showed a FPGA slice consumption of 1% for the transmitter and 3% for the estimator with 160 and 115?MHz operating frequencies, respectively. The signal-to-quantization-noise ratio (SQNR) performance of the transmitter is about 82?dB to support 4/16/64-QAM modulation. A Monte Carlo simulation demonstrates that the mean square error (MSE) of the channel estimator implemented in hardware is practically the same as the one obtained with the floating-point golden model. The high performance and reduced hardware of the proposed architectures lead to the conclusion that the DDST concept can be applied in current communications standards. 1. Introduction Presently, there is need to develop communications systems capable of transmitting/receiving various types of information (data, voice, video, etc.) at high speed. Nevertheless, designing these systems is always an extremely difficult task, and, therefore, the system must be broken down into several stages each with a specific task. The complexity of each stage is higher when the system operates in a wireless environment because the additional challenges that should be facing due to the complex nature of the channel and its susceptibility to several types of interference. As it is not possible to avoid the influence of the channel on a transmitted data sent through it, an option is to characterize the channel parameters with enough precision so that their effects can be reverted in the receiver. For that reason, channel estimation stage is a key part of any reliable wireless system because a correct channel estimation leads to a reduction of the bit error rate (BER). The channel estimator must deal with multiple phenomenas, such as multipath propagation and frequency Doppler (due to the mobility of the users). In order to deal with these problems, current communication standards specify the transmission of pilot signals which are known in the receiver, allowing an ease estimation of the communication channel. The way of transmitting such pilot signals can be classified in to two major branches: pilot-assisted transmission (PAT)—where pilot and data signals are multiplexed in time, frequency, code, space, or in a combination of the mentioned

References

[1]  A. Goljahani, N. Benvenuto, S. Tomasin, and L. Vangelista, “Superimposed sequence versus pilot aided channele estimations for next generation DVB-T systems,” IEEE Transactions on Broadcasting, vol. 55, no. 1, pp. 140–144, 2009.
[2]  B. Farhang-Boroujeny, “Pilot-based channel identification: proposal for semi-blind identification of communication channels,” Electronics Letters, vol. 31, no. 13, pp. 1044–1046, 1995.
[3]  S. Haykin and K. J. Ray Liu, Handbook on Array Processing and Sensor Networks, John Wiley & Sons, New York, NY, USA, 2009.
[4]  E. Alameda-Hernandez, D. C. McLernon, A. G. Orozco-Lugo, M. M. Lara, and M. Ghogho, “Frame/training sequence synchronization and DC-offset removal for (data-dependent) superimposed training based channel estimation,” IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2557–2569, 2007.
[5]  M. Ghogho and A. Swami, “Improved channel estimation using superimposed training,” in Proceedings of the IEEE 5th Workshop on Signal Processing Advances in Wireless Communications (SPAWC '04), pp. 110–114, July 2004.
[6]  M. Ghogho, D. McLernon, E. Alameda-Hernandez, and A. Swami, “Channel estimation and symbol detection for block transmission using data-dependent superimposed training,” IEEE Signal Processing Letters, vol. 12, no. 3, pp. 226–229, 2005.
[7]  O. Longoria-Gandara, R. Parra-Michel, M. Bazdresch, and A. G. Orozco-Lugo, “Iterative mean removal superimposed training for siso and mimo channel estimation,” International Journal of Digital Multimedia Broadcasting, vol. 2008, Article ID 535269, 9 pages, 2008.
[8]  R. Carrasco-Alvarez, R. Parra-Michel, A. G. Orozco-Lugo, and J. K. Tugnait, “Enhanced channel estimation using superimposed training based on universal basis expansion,” IEEE Transactions on Signal Processing, vol. 57, no. 3, pp. 1217–1222, 2009.
[9]  V. Najera-Bello, Design and construction of a digital communications system based on implicit training [M.S. thesis], CINVESTAV-IPN, 2008.
[10]  F. Martín del Campo, R. Cumplido, R. Perez-Andrade, and A. G. Orozco-Lugo, “A system on a programmable chip architecture for data-dependent superimposed training channel estimation,” International Journal of Reconfigurable Computing, vol. 2009, Article ID 912301, 10 pages, 2009.
[11]  E. Romero-Aguirre, R. Parra-Michel, R. Carrasco-Alvarez, and A. G. Orozco-Lugo, “Architecture based on array processors for data-dependent superimposed training channel estimation,” in Proceeding of the International Conference on Reconfigurable Computing and FPGAs (RECONFIG '11), pp. 303–308, December 2011.
[12]  A. G. Orozco-Lugo, M. M. Lara, and D. C. McLernon, “Channel estimation using implicit training,” IEEE Transactions on Signal Processing, vol. 52, no. 1, pp. 240–254, 2004.
[13]  N. Petkov, Systolic Parallel Processing, Elsevier Science, New York, NY, USA, 1992.
[14]  S. Kung, VLSI Array Processors, Prentice Hall, New York, NY, USA, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133