A molecularly imprinted polymer was prepared by a surface molecular imprinting technique in water-in-oil (W/O) emulsion. In this technique, the solid polymer, which is molecularly imprinted at the internal cavity surface, is prepared by polymerizing W/O emulsions consisting of a water-soluble imprinted molecule, a functional host molecule, an emulsion stabilizer, and a crosslinking agent. Dioleoyl phosphate was used as an emulsion stabilizer, and this compound also acted as a monomer and a host functional group in the imprinted cavity. Divinylbenzene was used as a crosslinker. Tryptophan methyl ester and phenylalanine methyl ester were used as the target template materials. These imprinted polymers exhibited enantiomeric selectivity in absorption experiments, and the maximum separation factor was 1.58. The enantiomeric selectivity with tryptophan methyl ester was higher than that with phenylalanine methyl ester. 1. Introduction Recently, significant attention has been paid to the development of a molecular imprinting technique that enables polymers to mimic biological receptors. This technique is a very useful approach for the fabrication of a matrix with molecular recognition sites, which are formed by the addition of template molecules during the matrix formation process and the removal of the template molecule after the matrix formation [1–5]. Polymers that were prepared by the molecular imprinting technique have attracted much attention as interesting separation tools, especially for high performance liquid chromatography (HPLC). The imprinting technique is conceptually easy to apply to a wide variety of target molecules. Important applications are optical resolutions of amino acids or amino acid derivatives [6–12], direct enantiomeric separation of drugs [13, 14], and separation of sugar or sugar derivatives [4, 15, 16]. The “surface molecular imprinting technique” was proposed to overcome the inapplicability to water-soluble substances, which are important in the biological or biomedical field [17–20]. In this technique, the solid polymer, which is molecularly imprinted at the internal cavity surface, is prepared by polymerizing water-in-oil (W/O) emulsions consisting of a water-soluble imprint molecule, a functional host molecule, an emulsion stabilizer, and a crosslinking agent. The organic-aqueous interface in W/O emulsions is utilized as the recognition field for a target molecule. The target molecule forms a complex with the functional host molecule, while the orientation of the functional host molecule itself is fixed at the oil-water
References
[1]
R. Gupta and A. Kumar, “Molecular imprinting in sol-gel matrix,” Biotechnology Advances, vol. 26, no. 6, pp. 533–547, 2008.
[2]
A. G. Mayes and K. Mosbach, “Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase,” Analytical Chemistry, vol. 68, no. 21, pp. 3769–3774, 1996.
[3]
S. W. Lee, D. H. Yang, and T. Kunitake, “Regioselective imprinting of anthracenecarboxylic acids onto TiO2 gel ultrathin films: an approach to thin film sensor,” Sensors and Actuators B, vol. 104, no. 1, pp. 35–42, 2005.
[4]
D. H. Yang, N. Takahara, S. W. Lee, and T. Kunitake, “Fabrication of glucose-sensitive TiO2 ultrathin films by molecular imprinting and selective detection of monosaccharides,” Sensors and Actuators B, vol. 130, no. 1, pp. 379–385, 2008.
[5]
D. H. Yang, Y. R. Ham, M. H. Oh et al., “Simple method for the fabrication of 1-hydroxypyrene-imprinted TiO2 gel nanofilms,” Current Applied Physics, vol. 9, no. 2, pp. e136–e139, 2009.
[6]
B. Sellergren, M. Lepist?, and K. Mosbach, “Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition,” Journal of the American Chemical Society, vol. 110, no. 17, pp. 5853–5860, 1988.
[7]
L. I. Andersson, D. J. O'Shannessy, and K. Mosbach, “Molecular recognition in synthetic polymers: preparation of chiral stationary phases by molecular imprinting of amino acid amides,” Journal of Chromatography, vol. 513, pp. 167–179, 1990.
[8]
K. J. Shea, D. A. Spivak, and B. Sellergren, “Polymer complements to nucleotide bases. Selective binding of adenine derivatives to imprinted polymers,” Journal of the American Chemical Society, vol. 115, no. 8, pp. 3368–3369, 1993.
[9]
O. Ramst?m, I. A. Nicholls, and K. Mosbach, “Synthetic peptide receptor mimics: highly stereoselective recognition in non-covalent molecularly imprinted polymers,” Tetrahedron Asymmetry, vol. 5, no. 4, pp. 649–656, 1994.
[10]
M. Kempe, “Antibody-mimicking polymers as chiral stationary phases in HPLC,” Analytical Chemistry, vol. 68, no. 11, pp. 1948–1953, 1996.
[11]
C. Yu and K. Mosbach, “Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers,” Journal of Organic Chemistry, vol. 62, no. 12, pp. 4057–4064, 1997.
[12]
S. Vidyasankar, M. Ru, and F. H. Arnold, “Molecularly imprinted ligand-exchange adsorbents for the chiral separation of underivatized amino acids,” Journal of Chromatography A, vol. 775, no. 1-2, pp. 51–63, 1997.
[13]
L. Fischer, R. Müller, B. Ekberg, and K. Mosbach, “Direct enantioseparation of β-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting,” Journal of the American Chemical Society, vol. 113, no. 24, pp. 9358–9360, 1991.
[14]
L. I. Andersson, “Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol,” Analytical Chemistry, vol. 68, no. 1, pp. 111–117, 1996.
[15]
G. Wulff and S. Schauhoff, “Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements,” Journal of Organic Chemistry, vol. 56, no. 1, pp. 395–400, 1991.
[16]
G. Wulff and J. Haarer, “Enzyme-analogue built polymers, 29. The preparation of defined chiral cavities for the racemic resolution of free sugars,” Die Makromolekulare Chemie, vol. 192, no. 6, pp. 1329–1338, 1991.
[17]
K. Uezu, H. Nakamura, J. I. Kanno, T. Sugo, M. Goto, and F. Nakashio, “Metal ion-imprinted polymer prepared by the combination of surface template polymerization with postirradiation by γ-rays,” Macromolecules, vol. 30, no. 13, pp. 3888–3891, 1997.
[18]
M. Yoshida, K. Uezu, F. Nakashio, and M. Goto, “Spacer effect of novel bifunctional organophosphorus monomers in metal-imprinted polymers prepared by surface template polymerization,” Journal of Polymer Science A, vol. 36, no. 15, pp. 2727–2734, 1998.
[19]
M. Yoshida, K. Uezu, M. Goto, and S. Furusaki, “Required properties for functional monomers to produce a metal template effect by a surface molecular imprinting technique,” Macromolecules, vol. 32, no. 4, pp. 1237–1243, 1999.
[20]
M. Yoshida, K. Uezu, M. Goto, and S. Furusaki, “Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions,” Journal of Applied Polymer Science, vol. 73, no. 7, pp. 1223–1230, 1999.
[21]
M. Goto, M. Matsumoto, K. Kondo, and F. Nakashio, “Development of new surfactant for loquid surfactnat membrane process,” Journal of Chemical Engineering of Japan, vol. 20, no. 2, pp. 157–164, 1987.
[22]
K. Uezu, H. Nakamura, M. Goto et al., “Novel metal ion-imprinted resins prepared by surface template polymerization with W/O emulsion,” Journal of Chemical Engineering of Japan, vol. 27, no. 3, pp. 436–438, 1994.
[23]
M. Goto, K. Kondo, and F. Nakashio, “Acceleration effect of anionic surfactants on extraction rate of copper with liquid surfactant membrane containing LIX65N and nonionic surfactant,” Journal of Chemical Engineering of Japan, vol. 22, no. 1, pp. 79–84, 1989.
[24]
B. Sellergren, “Molecular imprinting by noncovalent interactions. Enantioselectivity and binding capacity of polymers prepared under conditions favoring the formation of template complexes,” Die Makromolekulare Chemie, vol. 190, no. 11, pp. 2703–2711, 1989.
[25]
J. Mathew and O. Buchardt, “Molecular imprinting approach for the recognition of adenine in aqueous medium and hydrolysis of adenosine 5′-triphosphate,” Bioconjugate chemistry, vol. 6, no. 5, pp. 524–528, 1995.
[26]
F. S. Güner, Y. Ya?ci, and A. T. Erciyes, “Polymers from triglyceride oils,” Progress in Polymer Science, vol. 31, no. 7, pp. 633–670, 2006.
[27]
O. S. Kabasakal, “Styrenation of mahaleb and anchovy oils,” Progress in Organic Coatings, vol. 53, no. 3, pp. 235–238, 2005.
[28]
M. Yoshida, K. Uezu, M. Goto, and S. Furusaki, “Surface imprinted polymers recognizing amino acid chirality,” Journal of Applied Polymer Science, vol. 78, no. 4, pp. 695–703, 2000.