Magnesium oxide coated multiwalled carbon nanotubes (MgO@MWNT) were fabricated and dispersed into epoxy matrix. The microstructures of MgO@MWNT and epoxy/MgO@MWNT nanocomposites were characterized by TEM and SEM. Electrical resistivity and thermal conductivity of epoxy nanocomposites were investigated with high resistance meter and thermal conductivity meter, respectively. MgO@MWNT has core-shell structure with MgO as shell and nanotube as core, and the thickness of MgO shell is ca. 15?nm. MgO@MWNT has been dispersed well in the epoxy matrix. MgO@MWNT loaded epoxy nanocomposites still retain electrical insulation inspite of the filler content increase. However, thermal conductivity of epoxy was increased with the MgO@MWNT content increasing. When MgO@MWNT content reached 2.0?wt.%, thermal conductivity was increased by 89% compared to neat epoxy, higher than that of unmodified MWNT nanocomposites with the same loading content. 1. Introduction Integrated circuit with high integration and miniaturization has resulted in a large amount of waste heat that is produced when electronic components work at high frequency. Accumulated heat should make semiconductors’ working stability poor and life expectancy short under higher thermal environment [1]. High performance of electronic packaging material is expected to transport the heat to the integrated circuit [2]. Traditionally, some microsize fillers with high thermal conductivity have been added into polymer matrix to obtain electronic packaging materials [3–5]. However, high content of filler makes mechanical properties of composites deteriorate. Carbon nanotubes (CNT) have ultrahigh thermal conductivity, such as single-walled carbon nanotubes (SWNT) with 6000?W/(m·k) and multiwalled carbon nanotubes (MWNT) with 3000?W/(m·k) [6, 7]. Theoretically, small amount of CNT added can sharply improve the thermal conductivity of polymer matrix [8]. In fact, thermal conductivity improved by CNT is very far below the expected value, which results from the interface thermal resistance between CNT and polymer [9]. The interface thermal resistance weakened the heat flow transporting in the composites. To decrease thermal resistance and enhance heat flow transporting in the interface of CNT and polymer, some researches focused on the interface design between carbon nanomaterial and polymer to improve the thermal conductivity or other properties of polymer composites [10–14]. Although CNTs can improve the thermal conductivity of polymer, their excellent electrical conductive property can significantly change the electric
References
[1]
P. Y. Paik, V. K. Pamula, and K. Chakrabarty, “Adaptive cooling of integrated circuits using digital microfluidics,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 4, pp. 432–443, 2008.
[2]
A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, “High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application,” Applied Thermal Engineering, vol. 48, no. 15, pp. 72–80, 2012.
[3]
B. L. Zhu, J. Ma, J. Wu, K. C. Yung, and C. S. Xie, “Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles,” Journal of Applied Polymer Science, vol. 118, no. 5, pp. 2754–2764, 2010.
[4]
H. He, R. Fu, Y. Han, Y. Shen, and D. Wang, “High thermal conductive Si3N4 particle filled epoxy composites with a novel structure,” Journal of Electronic Packaging, vol. 129, no. 4, pp. 469–472, 2007.
[5]
X. C. Tong, K. Wattanakul, H. Manuspiya, and N. Yanumet, “Thermal conductivity and mechanical properties of BN-filled epoxy composite: effects of filler content, mixing conditions, and BN agglomerate size,” Journal of Composite Materials, vol. 45, no. 19, pp. 1967–1980, 2011.
[6]
S. Berber, Y. Kwon, and D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Physical Review Letters, vol. 84, no. 20, pp. 4613–4616, 2000.
[7]
P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical Review Letters, vol. 87, no. 21, Article ID 215502, 4 pages, 2001.
[8]
J. E. Peters, D. V. Papavassiliou, and B. P. Grady, “Unique thermal conductivity behavior of single-walled carbon nanotube-polystyrene composites,” Macromolecules, vol. 41, no. 20, pp. 7274–7277, 2008.
[9]
S. T. Huxtable, D. G. Cahill, S. Shenogin et al., “Interfacial heat flow in carbon nanotube suspensions,” Nature Materials, vol. 2, no. 11, pp. 731–734, 2003.
[10]
S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, “Effect of chemical functionalization on thermal transport of carbon nanotube composites,” Applied Physics Letters, vol. 85, no. 12, pp. 2229–2231, 2004.
[11]
S. Yang, C. M. Ma, C. Teng et al., “Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites,” Carbon, vol. 48, no. 3, pp. 592–603, 2010.
[12]
Y. K. Yang, L. J. Yu, R. G. Peng et al., “Incorporation of liquid-like multiwalled carbon nanotubes into an epoxy matrix by solvent-free processing,” Nanotechnology, vol. 23, no. 22, Article ID 225701, 2012.
[13]
Y. Yang, C. He, R. Peng et al., “Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites,” Journal of Materials Chemistry, vol. 22, no. 12, pp. 5666–5675, 2012.
[14]
Y. Yang, X. Xie, Z. Yang et al., “Controlled synthesis and novel solution rheology of hyperbranched poly(urea-urethang)-functionalized multiwalled carbon nanotubes,” Macromolecules, vol. 40, no. 16, pp. 5858–5867, 2007.
[15]
J. Zhao, F. Du, X. Zhou et al., “Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites,” Composites B, vol. 42, no. 8, pp. 2111–2116, 2011.
[16]
W. Cui, F. Du, J. Zhao et al., “Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes,” Carbon, vol. 49, no. 2, pp. 495–500, 2011.
[17]
F. Du, K. Wu, Y. Yang, L. Liu, T. Gan, and X. Xie, “Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes,” Nanotechnology, vol. 19, no. 8, Article ID 085716, 2008.
[18]
F. M. Blighe, Y. R. Hernandez, W. J. Blau, and J. N. Coleman, “Observation of percolation-like scaling—far from the percolation threshold—in high volume fraction, high conductivity polymer-nanotube composite films,” Advanced Materials, vol. 19, no. 24, pp. 4443–4447, 2007.
[19]
B. E. Kilbride, J. N. Coleman, J. Fraysse et al., “Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films,” Journal of Applied Physics, vol. 92, no. 7, pp. 4024–4030, 2002.
[20]
C. Velasco-Santos, A. L. Martínez-Hernández, M. Lozada-Cassou, A. Alvarez-Castillo, and V. M. Casta?o, “Chemical functionalization of carbon nanotubes through an organosilane,” Nanotechnology, vol. 13, no. 4, pp. 495–498, 2002.
[21]
P. C. Ma, J. Kim, and B. Z. Tang, “Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites,” Composites Science and Technology, vol. 67, no. 14, pp. 2965–2972, 2007.