全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using of Hyperbranched Poly(amidoamine) as Pretanning Agent for Leather

DOI: 10.1155/2013/120656

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although chrome is considered as the major tanning agent in the production of all types of hides and leather worldwide, it represents a serious source of environmental pollution. Therefore, polyamidoamine hyperbranched polymer (HPAM) was involved in pretanning of the depickled hides to enhance the chromium uptake during the tanning process. The key parameters which affect the exhaustion and fixation of chrome tan including shrinkage temperature of the tanned leather were studied. The results showed a significant improvement in the chrome exhaustion, the shrinkage temperature, and the texture and softness of the leather treated by HPAM. 1. Introduction At the last decades, hyperbranched polymers have attracted great attention due to their dendritic architecture as highly branched polymers and their unique properties including lower viscosity, higher solubility, and higher amount of reactive terminal groups, compared with their equivalent linear analogues. Furthermore hyperbranched polymers are synthesized via one pot reaction using various techniques such as step-growth polycondensation, self-condensing vinyl polymerization, ring-opening polymerization, self-condensing ring-opening polymerization, and proton transfer polymerization [1–5]. Several types of hyperbranched polymers were prepared such as polyphenylenes, polyethers, polyesters, polyamides, polycarbonates, poly(ether ketones), and polyurethanes [6–12]. Generally, hyperbranched polymers are readily feasible for different potential applications, such as toughening and cocuring agents, multifunctional initiators, rheology control compounds for surface modification, medical applications, nanofillers for polymer nanocomposites, nonlinear optics, nanoporous generators for low dielectric constant insulators, coatings, and drug delivery systems [13–24]. Therefore, hyperbranched polymers are of immense importance for industrial applications. Accordingly, this work was devoted to explore their application for further use in the leather industry as pretanning agents (modifying agent) to enhance the uptake of chrome during tanning process. In tanning process, protein of raw hides, which is easily attacked by organisms, is converted to a stable fiber structure, preventing their putrefaction. Although several types of metallic salts are employed for tanning of leather, chromium salts are still considered as the most important tanning agents used for all types of hides and leather. Generally, chromium salts are involved in more than 80% of the tanning industry worldwide [25]. However, under normal tanning

References

[1]  T. Satoh, “Synthesis of hyperbranched polymer using slow monomer addition method,” International Journal of Polymer Science, vol. 2012, Article ID 816163, 8 pages, 2012.
[2]  J. M. J. Fréchet, “Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy,” Science, vol. 263, no. 5154, pp. 1710–1715, 1994.
[3]  M. Jikei and M.-A. Kakimoto, “Hyperbranched polymers: a promising new class of materials,” Progress in Polymer Science, vol. 26, no. 8, pp. 1233–1285, 2001.
[4]  S. Peleshanko and V. V. Tsukruk, “The architectures and surface behavior of highly branched molecules,” Progress in Polymer Science, vol. 33, no. 5, pp. 523–580, 2008.
[5]  B. I. Voit and A. Lederer, “Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects,” Chemical Reviews, vol. 109, no. 11, pp. 5924–5973, 2009.
[6]  Y. H. Kim and R. Beckerbauer, “Role of end groups on the glass transition of hyperbranched polyphenylene and triphenylbenzene derivatives,” Macromolecules, vol. 27, no. 7, pp. 1968–1971, 1994.
[7]  T. M. Miller, T. X. Neenan, E. W. Kwock, and S. M. Stein, “Dendritic analogues of engineering plastics: a general one-step synthesis of dendritic polyaryl ethers,” Journal of the American Chemical Society, vol. 115, no. 1, pp. 356–357, 1993.
[8]  E. Malmstr?m, M. Johansson, and A. Hult, “Hyperbranched aliphatic polyesters,” Macromolecules, vol. 28, no. 5, pp. 1698–1703, 1995.
[9]  G. Yang, M. Jikei, and M.-A. Kakimoto, “Synthesis and properties of hyperbranched aromatic polyamide,” Macromolecules, vol. 32, no. 7, pp. 2215–2220, 1999.
[10]  D. H. Bolton and K. L. Wooley, “Synthesis and characterization of hyperbranched polycarbonates,” Macromolecules, vol. 30, no. 7, pp. 1890–1896, 1997.
[11]  A. Morikawa, “Preparation and properties of hyperbranched poly(ether ketones) with a various number of phenylene units,” Macromolecules, vol. 31, no. 18, pp. 5999–6009, 1998.
[12]  A. Kumar and S. Ramakrishnan, “Hyperbranched polyurethanes with varying spacer segments between the branching points,” Journal of Polymer Science A, vol. 34, no. 5, pp. 839–848, 1996.
[13]  M. M. Eissa, M. S. A. Youssef, A. M. Ramadan, and A. Amin, “Poly(ester-amine) hyperbranched polymer as toughening and co-curing agent for epoxy/clay nanocomposites,” Polymer Engineering & Science, vol. 53, pp. 1011–1020, 2013.
[14]  D. Foix, X. Fernández-Francos, X. Ramis, A. Serra, and M. Sangermano, “New pegylated hyperbranched polyester as chemical modifier of epoxy resins in UV cationic photocuring,” Reactive and Functional Polymers, vol. 71, no. 4, pp. 417–424, 2011.
[15]  V. V. Tsukruk, “Assembly of supramolecular polymers in ultrathin films,” Progress in Polymer Science, vol. 22, no. 2, pp. 247–311, 1997.
[16]  J. Zou, W. Shi, J. Wang, and J. Bo, “Encapsulation and controlled release of a hydrophobic drug using a novel nanoparticle-forming hyperbranched polyester,” Macromolecular Bioscience, vol. 5, no. 7, pp. 662–668, 2005.
[17]  J. Xu, H. Wu, O. P. Mills, and P. A. Heiden, “A morphological investigation of thermosets toughened with novel thermoplastics. I. Bismaleimide modified with hyperbranched polyester,” Journal of Applied Polymer Science, vol. 72, pp. 1065–1076, 1999.
[18]  Y. Zhang, L. Wang, T. Wada, and H. Sasabe, “Synthesis and characterization of novel hyperbranched polymer with dipole carbazole moieties for multifunctional materials,” Journal of Polymer Science A, vol. 34, pp. 1359–1363, 1996.
[19]  J.-S. Kim, H.-C. Kim, B. Lee, and M. Ree, “Imprinting of nanopores in organosilicate dielectric thin films with hyperbranched ketalized polyglycidol,” Polymer, vol. 46, no. 18, pp. 7394–7402, 2005.
[20]  K. Fang, Z. Xu, X. Jiang, and S. Fu, “Preparation of amphiphilic hyperbranched polyesteramides by grafting mono methoxy polyethylene glycol onto hyperbranched polyesteramides via 2,4-tolylene diisocyanate,” Polymer Bulletin, vol. 61, no. 1, pp. 63–69, 2008.
[21]  L. J. Hobson, A. M. Kenwright, and W. J. Feast, “A simple 'one pot' route to the hyperbranched analogues of Tomalia's poly(amidoamine) dendrimers,” Chemical Communications, no. 19, pp. 1877–1878, 1997.
[22]  L. J. Hobson and W. J. Feast, “Poly(amidoamine) hyperbranched systems: synthesis, structure and characterization,” Polymer, vol. 40, no. 5, pp. 1279–1297, 1999.
[23]  M. Sangermano, H. El Sayed, and B. Voit, “Ethoxysilyl-modified hyperbranched polyesters as mulitfunctional coupling agents for epoxy-silica hybrid coatings,” Polymer, vol. 52, no. 10, pp. 2103–2109, 2011.
[24]  X. Zhang, X. Zhang, Z. Wu et al., “A hydrotropic β-cyclodextrin grafted hyperbranched polyglycerol co-polymer for hydrophobic drug delivery,” Acta Biomaterialia, vol. 7, no. 2, pp. 585–592, 2011.
[25]  C. Bagiran, D. Brendler, and F. Wegener, “Environmentally friendly tanning composition,” US Patent 20130081211 A1, 2013.
[26]  Z.-R. Guo, G. Zhang, J. Fang, and X. Dou, “Enhanced chromium recovery from tanning wastewater,” Journal of Cleaner Production, vol. 14, no. 1, pp. 75–79, 2006.
[27]  Z. Gao and C. Su, Treatment of Tannery Waste Water, Beijing Chemical Engineering Publisher, 2001.
[28]  M. C. Chuan and J. C. Liu, “Release behavior of chromium from tannery sludge,” Water Research, vol. 30, no. 4, pp. 932–938, 1996.
[29]  T. C. Voice, M. L. Davis, G. B. Johnson, and L. L. Sturgess, “Evaluation of chromium recovery opportunities in a leather tannery,” Hazardous Waste & Hazardous Materials, vol. 5, no. 4, pp. 343–352, 1988.
[30]  M. A. Eid, E. A. Al-Ashkara, K. A. Eid, E. H. A. Nashy, and E. H. Borai, “Speciation of chromium ions in tannery effluents and subsequent determination of Cr (VI) by ICP-AES,” Journal of the American Leather Chemists Association, vol. 97, no. 11, pp. 451–455, 2002.
[31]  K. J. Sreeram and T. Ramasami, “Sustaining tanning process through conservation, recovery and better utilization of chromium,” Resources, Conservation and Recycling, vol. 38, no. 3, pp. 185–212, 2003.
[32]  M. A. Baig, M. Mir, S. Murtaza, and Z. I. Bhatti, “Laboratory scale studies on removal of chromium from industrial wastes,” Journal of Environmental Sciences, vol. 15, no. 3, pp. 417–422, 2003.
[33]  B. Chandrasekaran, J. Raghava Rao, K. J. Sreeram, B. U. Nair, and T. Ramasami, “Chrome tanning: state-of-art on the material composition and characterization,” Journal of Scientific and Industrial Research, vol. 58, no. 1, pp. 1–10, 1999.
[34]  T. Ramasami, “Greening of chrome tanning in Indian leather industry,” ILIFO Journal of Cleaner Tanning, vol. 2, pp. 12–15, 1996.
[35]  F. Silvestre, C. Rocrelle, A. Gaset, N. Caruel, and A. Darnaud, “Clean technology for tannage with chromium salts part 1: development of a new process in hydrophobic organic solvent media,” Journal of the Society of Leather Technologies and Chemists, vol. 78, no. 1, pp. 1–7, 1994.
[36]  K. J. Kedialya, “Recent technological progress and innovations in the application of chrome in leather making,” Leather Scissors, vol. 21, pp. 1–11, 1974.
[37]  B. G. S. Prasad, B. Chandrasekaran, J. R. Rao, N. K. Chandrababu, M. Kanthimathi, and T. Ramasami, “Prospects for Chromium management in Tanneries: a critical review,” Leather Scissors, vol. 34, pp. 132–147, 1987.
[38]  C.-H. Liu, C. Gao, and D.-Y. Yan, “Aliphatic hyper branched poly(amido amine)s (PAMAMs): preparation and modification,” Chemical Research in Chinese Universities, vol. 21, no. 3, pp. 345–354, 2005.
[39]  C. Gao and D. Yan, “Polyaddition of B2 and BB′2 type monomers to A2 type monomer. 1. Synthesis of highly branched copoly(sulfone-amine)s,” Macromolecules, vol. 34, no. 2, pp. 156–161, 2001.
[40]  C. Gao and D. Yan, “Hyperbranched polymers: from synthesis to applications,” Progress in Polymer Science, vol. 29, no. 3, pp. 183–275, 2004.
[41]  L. Shakir, S. Ejaz, M. Ashraf et al., “Ecotoxicological risks associated with tannery effluent wastewater,” Environmental Toxicology and Pharmacology, vol. 34, no. 2, pp. 180–191, 2012.
[42]  SLTC, Official Methods of Analysis, vol. 52 of Society of Leather Trade Chemists, Redbourne, UK, 4th edition, 1965.
[43]  Egyptian Standard Specifications, Chemical and biological tests of leather (ES122), 3/8/1, 1986.
[44]  Egyptian Standard Specifications, Physical tests of leather (ES121), 2/2, 1986.
[45]  E. H. A. Nashy, O. Osman, A. A. Mahmoud, and M. Ibrahim, “Molecular spectroscopic study for suggested mechanism of chrome tanned leather,” Spectrochimica Acta A, vol. 88, pp. 171–176, 2012.
[46]  E. H. A. Nashy, M. H. Khedr, and N. H. El-Sayed, “Effect of different basifying agents on exhaustion and fixation of chrome tan,” Egyptian Journal of Textile & Polymer Science & Technology, vol. 10, pp. 157–189, 2006.
[47]  E. H. A. Nashy, M. H. Khedr, and N. H. El-Sayed, “Improvement of exhaustion and fixation of chrome tan by hydroxy carboxylic acids,” Egyptian Journal of Textile & Polymer Science & Technology, vol. 11, pp. 57–70, 2007.
[48]  H. P. Germann, “Chrome tannage from the viewpoint of ecology,” Journal of Society of Leather Technologists and Chemists, vol. 79, pp. 82–85, 1995.
[49]  T. C. Thorstensen, Practical Leather Technology, chapter 11, Krieger Publishing, Malabar, Fla, USA, 4th edition, 1993.
[50]  K. H. Gustavson, The Chemistry of Tanning Process, Academic Press, New York, NY, USA, 1956.
[51]  E.-S. H. A. Nashy, M. M. Essa, and A. I. Hussain, “Synthesis and application of methyl methacrylate/butyl acrylate copolymer nanoemulsions as efficient retanning and lubricating agents for chrome-tanned leather,” Journal of Applied Polymer Science, vol. 124, no. 4, pp. 3293–3301, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133