全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effect of H-Bonding on Radical Copolymerization of Maleic Anhydride with N-tert-Butylacrylamide and Its Characterization

DOI: 10.1155/2013/842894

Full-Text   Cite this paper   Add to My Lib

Abstract:

The copolymerization reaction between N-tert-butylacrylamide (NTBA) and maleic anhydride (MA) in p-dioxane solution at 65°C using 2,2′-azoisobutyronitrile (AIBN) as an initiator in nitrogen atmosphere was carried out. The chemical structure of the obtained copolymers from a wide range of monomer feeds was determined by elemental analysis (content of N for NTBA units), Fourier transform infrared (FTIR), and 1H-NMR spectroscopy. Also, the amounts of MA units in the copolymers were found using the chemical titration method. An observed tendency toward alternating copolymerization at ≤50 mol% NTBA concentration in monomer feed and relatively high activity of NTBA growing radical was explained by H-bond formation between C=O (anhydride) and NH (amide) fragments during chain growth reactions. Intrinsic viscosity and the molecular weights of the synthesized copolymers depend on the type of comonomer and the amount of NTBA units in the copolymers. The synthesized poly(NTBA-MA)s containing a functional amphiphilic group show both temperature and pH sensitivity and can be used for biological proposes as a physiologically active macromolecular system. 1. Introduction Copolymer is the most successful and powerful method for effecting a systematic change in polymer [1]. Studies have shown that the copolymerization reactions provide an excellent way to prepare macromolecules with specific chemical structures and to control properties such as hydrophilic/hydrophobic balances, polarity, and solubility [2]. Many polymers with reactive functional groups are now being synthesized, tested, and used not only for the macromolecular properties but also for the properties of functional groups. These functional groups provide an approach to a subsequent modification of the polymers for a specific end application [3]. An anhydride group containing maleic anhydride and its polymers has received considerable attention recently because of its varied applications. Maleic anhydride cannot be homopolymerized under normal conditions [4] or hardly homopropagates, which means that maleic anhydride-maleic anhydride diads are virtually absent in the polymer chain [5]. Nevertheless, the reactive MA moiety provides the copolymers with a wide variety of options for chemical modification [6]. Furthermore, it is generally accepted that copolymerization shows a strong tendency toward alternation [7]. Acrylamide and its derivatives can undergo alternating copolymerization with maleic anhydride under the given conditions [8–18]. Due to this complex formation, the alternating copolymerization of

References

[1]  D. A. Tirrell, M. H. Tirrell, N. M. Bikalws, et al., Encyclopedia of Polymers Sciences and Engineering, vol. 4, John Wiley & Sons, New York, NY, USA, 1985.
[2]  A. Gallardo, A. R. Lemus, J. San Román, A. Cifuentes, and J.-C. Díez-Masa, “Micellar electrokinetic chromatography applied to copolymer systems with heterogeneous distribution,” Macromolecules, vol. 32, no. 3, pp. 610–617, 1999.
[3]  O. Vogl, A. C. Albertsson, and Z. Janovic, “New developments in speciality polymers: polymeric stabilizers,” Polymer, vol. 26, no. 9, pp. 1288–1296, 1985.
[4]  J. M. G. Cowie, Alternating Copolymers, Plenum Press, New York, NY, USA, 1985.
[5]  D. J. T. Hill, J. H. O’Donnell, and P. W. O’Sullivan, “Analysis of the mechanism of copolymerization of styrene and maleic anhydride,” Macromolecules, vol. 18, pp. 9–17, 1985.
[6]  B. Klumperman, “Mechanistic considerations on styrene-maleic anhydride copolymerization reactions,” Polymer Chemistry, vol. 1, no. 5, pp. 558–562, 2010.
[7]  E. Tsuchida and T. Tomono, “Mechanism of alternating copolymerization of styrene and maleic anhydride,” Macromolocular Chemistry, vol. 141, pp. 265–298, 1971.
[8]  Z. M. O. Rzaev, Polymers and Copolymers of Maleic Anhydride, vol. 102 of Chemical Abstracts, Elm, Baku, Azerbaijan, 1985.
[9]  V. A. Kabanov, V. P. Zubov, and Y. Semchikov, Complex Radical Polymerization, Khimiya, Moscow, Russia, 1987.
[10]  Z. M. O. Rzaev, “Complex-radical alternating copolymerization,” Progress in Polymer Science, vol. 25, no. 2, pp. 163–217, 2000.
[11]  S. Din?er, V. K?seli, H. Kesim, Z. M. O. Rzaev, and E. Pi?kin, “Radical copolymerization of N-isopropylacrylamide with anhydrides of maleic and citraconic acids,” European Polymer Journal, vol. 38, no. 11, pp. 2143–2152, 2002.
[12]  S. Dincer, Z. M. O. Rzaev, and E. Piskin, “Synthesis and characterization of stimuli-responsive poly(N-isopropylacrylamide-co-N-vinyl-2-pyrrolidone),” Journal of Polymer Research, vol. 13, no. 2, pp. 121–131, 2006.
[13]  H. K. Can, Z. M. O. Rzaev, and A. Güner, “H-bonding effect in radical terpolymerization of maleic anhydride, acrylic acid (methyl acrylate) and vinyl acetate,” Hacettepe Journal of Biology and Chemistry, vol. 40, pp. 427–443, 2012.
[14]  B. C. Trivedi and B. M. Culbertson, Maleic Anhydride, Plenum Press, New York, NY, USA, 1982.
[15]  H. Ringsdorf, J. Venzmer, and F. M. Winnik, “Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides),” Macromolecules, vol. 24, no. 7, pp. 1678–1686, 1991.
[16]  J.-P. Chen and M.-S. Hsu, “Preparations and properties of temperature-sensitive poly(N-isopropylacrylamide)-chymotrypsin conjugates,” Journal of Molecular Catalysis B, vol. 2, no. 4-5, pp. 233–241, 1997.
[17]  C. K. Chee, S. Rimmer, I. Soutar, and L. Swanson, “Time-resolved fluorescence anisotropy studies of the temperature-induced intramolecular conformational transition of poly(N-isopropylacrylamide) in dilute aqueous solution,” Polymer, vol. 38, no. 2, pp. 483–486, 1997.
[18]  H. G. Schild and D. A. Tirrell, “Use of nonradiative energy transfer to explore interpolymer and polymer-solute interactions in aqueous solutions of poly(N-isopropylacrylamide),” Macromolecules, vol. 25, no. 18, pp. 4553–4558, 1992.
[19]  A. Reiche, A. Weinkauf, B. Sandner, F. Rittig, and G. Fleischer, “Alternating copolymers for novel polymer electrolytes: the electrochemical properties,” Electrochimica Acta, vol. 45, no. 8, pp. 1327–1334, 2000.
[20]  T. Kato, N. Mizoshita, and K. Kanie, “hydrogen-bonded liquid crystalline materials: supramolecular polymeric assembly and the induction of dynamic function,” Macromolecular Rapid Communication, vol. 22, pp. 797–814, 2001.
[21]  H. K. Can, Z. M. O. Rzaev, and A. Güner, “Hydrogen (H)-complex formation of maleic anhydride-acrylic acid (methyl acrylate) monomer system,” Journal of Molecular Liquids, vol. 111, no. 1–3, pp. 77–84, 2004.
[22]  C. Ladavière, T. Delair, A. Domard, C. Pichot, and B. Mandrand, “Studies of the thermal stability of maleic anhydride co-polymers in aqueous solution,” Polymer Degradation and Stability, vol. 65, no. 2, pp. 231–241, 1999.
[23]  R. K. Bund and R. S. Singhal, “An alkali stable cellulase by chemical modification using maleic anhydride,” Carbohydrate Polymers, vol. 47, no. 2, pp. 137–141, 2002.
[24]  L. Veron, M.-C. de Bignicourt, T. Delair, C. Pichot, and B. Mandrand, “Syntheses of poly[N-(2,2 dimethoxyethyl)-N-methyl acrylamide] for the immobilization of oligonucleotides,” Journal of Applied Polymer Science, vol. 60, no. 2, pp. 235–244, 1996.
[25]  N.-J. Lee, Y.-A. Kim, S.-H. Kim, W.-M. Choi, and W.-J. Cho, “Syntheses and biological activities of N-alaninylmaleimide and its polymers,” Journal of Macromolecular Science A, vol. 34, no. 1, pp. 1–11, 1997.
[26]  N. P. Desai and J. A. Hubbell, “Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials,” Biomaterials, vol. 12, no. 2, pp. 144–153, 1991.
[27]  S. Din?er, A. Tuncel, and E. Pi?kin, “A potential gene delivery vector: N-isopropylacrylamide-ethyleneimine block copolymers,” Macromolecular Chemistry and Physics, vol. 203, pp. 1460–1465, 2002.
[28]  V. Bulmu?, S. Patr, S. A. Tuncel, and E. Pi?kin, “Stimuli-responsive properties of conjugates of N-isopropylacrylamide-co-acrylic acid oligomers with alanine, glycine and serine mono-, di- and tri-peptides,” Journal of Controlled Release, vol. 76, no. 3, pp. 265–274, 2001.
[29]  B. Kyu Kim, S. Yun Park, and S. Jin Park, “Morphological, thermal and rheological properties of blends: Polyethylene/nylon-6, polyethylene/nylon-6/(maleic anhydride-g-polyethylene) and (maleic anhydride-g-polyethylene)/nylon-6,” European Polymer Journal, vol. 27, no. 4-5, pp. 349–354, 1991.
[30]  C. A. Lucchesi, P. J. Secrets, and C. F. Hirn, Standart Method of Chemical Analysis, Krieger Publishing Company, New York, NY, USA, 1975.
[31]  G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, NY, USA, 1997.
[32]  P. V. Shibaev, S. L. Jensen P Andersen, et al., “Multicomponent hydrogen-bonded liquid crystalline mixtures,” Macromolecular Rapid Communications, vol. 22, pp. 493–497, 2001.
[33]  M. M. Coleman and P. C. Painter, “Hydrogen bonded polymer blends,” Progress in Polymer Science, vol. 20, no. 1, pp. 1–59, 1995.
[34]  A. A. El'Saied, S. Y. Mirlina, and V. A. Kargin, “Copolymerization of unsaturated mono- and dibasic acids. The possibility of controlling copolymer composition,” Polymer Science U.S.S.R, vol. 11, no. 2, pp. 314–328, 1969.
[35]  T. Kelen and F. Tüd?s, “Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method,” Journal of Macromolecular Science Chemistry A, vol. 9, pp. 1–27, 1975.
[36]  M. Dube, R. A. Sanayei, A. Penlidis, K. F. O'Driscoll, and P. M. Reilly, “A microcomputer program for estimation of copolymerization reactivity ratios,” Journal of Polymer Science A, vol. 29, no. 5, pp. 703–708, 1991.
[37]  C. W. Pyun, “Comonomer and sterosequence distributions in high polymers,” Journal of Polymer Science A, vol. 8, no. 7, pp. 1111–1126, 1970.
[38]  T. Alfrey and C. C. Price, “Relative reactivities in vinyl copolymerization,” Journal of Polymer Science, vol. 2, pp. 101–106, 1947.
[39]  L. J. Young and G. Ham, High Polymers—Copolymerization, Interscience, New York, NY, USA, 1964.
[40]  V. Ozturk and O. Okay, “Temperature sensitive poly (N-t-butylacrylamide-co-acrylamide) hydrogels: synthesis and swelling behavior,” Polymer, vol. 43, no. 18, pp. 5017–5026, 2002.
[41]  V. Bulmus, S. Pat?r, S. A. Tuncel, et al., “Conjugates of poly(N-isopropyl acryl amide-co-acrylic acid) with alanine mono-, di- and tri-peptides,” Journal of Applied Polymer Science, vol. 88, pp. 2012–2019, 2003.
[42]  N. S. Save, M. Jassal, and A. K. Agrawal, “Stimuli sensitive copolymer poly(N-tert-butylacrylamideran-acrylamide): synthesis and characterization,” Journal of Applied Polymer Science, vol. 95, no. 3, pp. 672–680, 2005.
[43]  P. Bajaj, T. V. Sreekumar, and K. Sen, “Effect of reaction medium on radical copolymerization of acrylonitrile with vinyl acids,” Journal of Applied Polymer Science, vol. 79, pp. 1640–1652, 2001.
[44]  A. K. Bajpai and A. Giri, “Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals,” Reactive and Functional Polymers, vol. 53, no. 2-3, pp. 125–141, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133