全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Arabidopsis Stress Responsive Gene Database

DOI: 10.1155/2013/949564

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plants in nature may face a wide range of favorable or unfavorable biotic and abiotic factors during their life cycle. Any of these factors may cause stress in plants; therefore, they have to be more adaptable to stressful environments and must acquire greater response to different stresses. The objective of this study is to retrieve and arrange data from the literature in a standardized electronic format for the development of information resources on potential stress responsive genes in Arabidopsis thaliana. This provides a powerful mean for manipulation, comparison, search, and retrieval of records describing the nature of various stress responsive genes in Arabidopsis thaliana. The database is based exclusively on published stress tolerance genes associated with plants. 1. Introduction Stress response is the general term for defining the interaction between plants and the extreme environmental conditions. The study of mechanisms of adaptation to stressful and extreme environments provides the basis for addressing environmental, toxicological, and physiological problems [1]. Changes in the expression of individual genes and proteins induced by stress have been monitored under different conditions. As of the year 2000, the sequence of the Arabidopsis thaliana genome is nearly completed, and soon a catalog of plant gene expression exceeding a million transcripts will be available [2]. Here, we have listed the stress responsive genes for Arabidopsis thaliana (thale cress), a member of the mustard family, that has become a widely used model for the study of plant biology because of its small size, short generation time, facile genetics, and ease of transformation [3]. There are few databases that have been designed for stress responsive genes in plants. Plant Stress Gene Database [4] include 259 stress-related genes of 11 species along with all the available information about the individual genes. While it contains only 33 genes from Arabidopsis thaliana, our database contains 637 gene entries related to stress response in Arabidopsis thaliana. Another example—STIFDB—Arabidopsis Stress Responsive Transcription Factor Database [5], is a comprehensive collection of abiotic stress responsive genes in Arabidopsis thaliana, with options to identify probable transcription factor binding sites in their promoters, which is limited to only abiotic stress. Apart from these, we have The Arabidopsis Information Resource (TAIR) [6, 7], genetic and molecular biology data for the model higher plant Arabidopsis thaliana, which is more widespread to different aspects

References

[1]  D. Kultz, “Molecular and evolutionary basis of the cellular stress response,” Annual Review of Physiology, vol. 67, pp. 225–257, 2005.
[2]  H. J. Bohnert, P. Ayoubi, C. Borchert et al., “A genomics approach towards salt stress tolerance,” Plant Physiology and Biochemistry, vol. 39, no. 3-4, pp. 295–311, 2001.
[3]  X. Lin, S. Kaul, S. Rounsley et al., “Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana,” Nature, vol. 402, no. 6763, pp. 761–768, 1999.
[4]  R. Prabha, I. Ghosh, and D. P. Singh, “Plant stress gene database,” ARPN Journal of Science and Technology, vol. 1, pp. 28–31, 2011.
[5]  K. Shameer, S. Ambika, S. M. Varghese, N. Karaba, M. Udayakumar, and R. Sowdhamini, “STIFDB—Arabidopsis stress responsive transcription factor dataBase,” International Journal of Plant Genomics, vol. 2009, Article ID 583429, 8 pages, 2009.
[6]  D. Swarbreck, C. Wilks, P. Lamesch et al., “The Arabidopsis information resource (TAIR): gene structure and function annotation,” Nucleic Acids Research, vol. 36, no. 1, pp. D1009–D1014, 2008.
[7]  E. Huala, A. W. Dickerman, M. Garcia-Hernandez et al., “The Arabidopsis information resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant,” Nucleic Acids Research, vol. 29, no. 1, pp. 102–105, 2001.
[8]  S. F. Altschul, T. L. Madden, A. A. Sch?ffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[9]  P. Zimmermann, M. Hirsch-Hoffmann, L. Hennig, and W. Gruissem, “GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox,” Plant Physiology, vol. 136, no. 1, pp. 2621–2632, 2004.
[10]  N. Dupl'áková, D. Reňák, P. Hovanec, B. Honysová, D. Twell, and D. Honys, “Arabidopsis gene family profiler (aGFP)—user-oriented transcriptomic database with easy-to-use graphic interface,” BMC Plant Biology, vol. 7, article 39, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133