Rice is a stable food in Vietnam and plays a key role in the economy of the country. However, the production and the cultivating areas are adversely affected from the threats of devastation caused by the rise of sea level. Using marker-assisted backcrossing (MABC) to develop a new salt tolerance rice cultivar is one of the feasible methods to cope with these devastating changes. To improve rice salt tolerance in BT7 cultivar, FL478 was used as a donor parent to introgress the Saltol QTL conferring salt tolerance into BT7. Three backcrosses were conducted and successfully transferred positive alleles of Saltol from FL478 into BT7. The plants numbers IL-30 and IL-32 in BC3F1 population expected recurrent genome recovery of up to 99.2% and 100%, respectively. These selected lines that carried the Saltol alleles were screened in field for their agronomic traits. All improved lines had Saltol allele similar to the donor parent FL478, whereas their agronomic performances were the same as the original BT7. We show here the success of improving rice salt tolerance by MABC and the high efficiency of selection in early generations. In the present study, MABC has accelerated the development of superior qualities in the genetic background of BT7. 1. Introduction Salinity is one of the major impediments to enhancing production in rice growing areas worldwide. One-fifth of irrigated arable lands in the world has been reported to be adversely influenced by high soil salinity [1]. As per the report of FAO, 2010 [2], over 800 million ha of worldwide land are severely salt affected and approximately 20% of irrigated areas (about 45 million ha) are estimated to suffer from salinization problems by various degrees. This is more serious since irrigated areas are responsible for one-third of world’s food production. In Asia, 21.5 million hectares of land areas are affected by salinity and estimated to cause the loss of up to 50% fertile land by the 21st midcentury [3]. Rice is the most important food crop for over half of the world’s population and supplies 20% of daily calories [4]. Rice is a major crop in Vietnam, as the world’s second-largest rice exporter after Thailand, together accounting for 50% of the world rice trade. Vast portions of the food producing regions in the country will be inundated by sea water, expected to be at about 19.0% ?37.8% of the Mekong River Delta (MRD) and about 1.5% ?11.2% of the Red River Delta (RRD). With sea level rise by 1?m, approximately 40,000?km2 will be inundated, and salinity intrusion is expected to cover about 71% of the MRD and
References
[1]
S. Negr?o, B. Courtois, N. Ahmadi, I. Abreu, N. Saibo, and M. M. Oliveira, “Recent updates on salinity stress in rice: from physiological to molecular responses,” Critical Reviews in Plant Sciences, vol. 30, no. 4, pp. 329–377, 2011.
[2]
Food and Agriculture Organization, “Report of salt affected agriculture,” 2010, http://www.fao.org/ag/agl/agll/spush/.
[3]
R. Nazar, N. Iqbal, A. Masood, S. Syeed, and N. A. Khan, “Understanding the significance of sulfur in improving salinity tolerance in plants,” Environmental and Experimental Botany, vol. 70, no. 2-3, pp. 80–87, 2011.
[4]
World Rice Statistics, http://www.irri.org.
[5]
M. H. Nguyen, P. V. Thu, and N. T. Cuong, “Evaluating arable soil composition in order to well manage the soil resource of Vietnam,” in Proceedings of the 9th Workshop of Vietnam Institute of Meteorology Hydrology and Environment, vol. 9, pp. 437–442, Vietnam, 2006.
[6]
Ministry of Agriculture and Rural Development, “Vietnam News Agency,” 2005.
[7]
Z. H. Ren, J. P. Gao, L. G. Li et al., “A rice quantitative trait locus for salt tolerance encodes a sodium transporter,” Nature Genetics, vol. 37, no. 10, pp. 1141–1146, 2005.
[8]
D. Singh, A. Kumar, A. S. Kumar, et al., “Marker assisted selection and crop management for salt tolerance: a review,” African Journal Biotechnology, vol. 10, no. 66, pp. 14694–14698, 2011.
[9]
P. Bonilla, J. Dvorak, D. Mackill, K. Deal, and G. Gregorio, “RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines,” Philippine Agricultural Scientist, vol. 65, no. 1, pp. 68–76, 2002.
[10]
H. Takehisa, T. Shimodate, Y. Fukuta et al., “Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water,” Field Crops Research, vol. 89, no. 1, pp. 85–95, 2004.
[11]
C. N. Neeraja, R. Maghirang-Rodriguez, A. Pamplona et al., “A marker-assisted backcross approach for developing submergence-tolerant rice cultivars,” Theoretical and Applied Genetics, vol. 115, no. 6, pp. 767–776, 2007.
[12]
F. Hospital, “Marker-assisted breeding,” in Plant Molecular Breeding, H. J. Newbury, Ed., pp. 30–59, Blackwell Publishing, Oxford, UK, 2003.
[13]
M. Frisch and A. E. Melchinger, “Selection theory for marker-assisted backcrossing,” Genetics, vol. 170, no. 2, pp. 909–917, 2005.
[14]
S. Chen, X. H. Lin, C. G. Xu, and Q. Zhang, “Improvement of bacterial blight resistance of 'Minghui 63', an elite restorer line of hybrid rice, by molecular marker-assisted selection,” Crop Science, vol. 40, no. 1, pp. 239–244, 2000.
[15]
S. Chen, C. G. Xu, X. H. Lin, and Q. Zhang, “Improving bacterial blight resistance of '6078', an elite restorer line of hybrid rice, by molecular marker-assisted selection,” Plant Breeding, vol. 120, no. 2, pp. 133–137, 2001.
[16]
P. H. Zhou, Y. F. Tan, Y. Q. He, C. G. Xu, and Q. Zhang, “Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection,” Theoretical and Applied Genetics, vol. 106, no. 2, pp. 326–331, 2003.
[17]
D. J. Mackill, “Breeding for resistance to abiotic stresses in rice: the value of quantitative trait loci,” in Plant Breeding, K. R. Lamkey and M. Lee, Eds., pp. 201–212, Blackwell Publishing, Ames, Iowa, 2006.
[18]
B. C. Y. Collard and D. J. Mackill, “Marker-assisted selection: an approach for precision plant breeding in the twenty-first century,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1491, pp. 557–572, 2008.
[19]
K. Zheng, P. K. Subudhi, J. Domingo, G. Magpantay, and N. Huang, “Rapid DNA isolation for marker assisted selection in rice breeding,” Rice Genetics News Letter, vol. 12, pp. 255–258, 1995.
[20]
S. R. McCouch, L. Teytelman, Y. Xu et al., “Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.),” DNA Research, vol. 9, no. 6, pp. 199–207, 2002.
[21]
SSR Marker, 2011, http://www.gramene.org/.
[22]
R. Van Berloo, “GGT 2.0: versatile software for visualization and analysis of genetic data,” Journal of Heredity, vol. 99, no. 2, pp. 232–236, 2008.
[23]
J. U. Jeung, H. G. Hwang, H. P. Moon, and K. K. Jena, “Fingerprinting temperate japonica and tropical indica rice genotypes by comparative analysis of DNA markers,” Euphytica, vol. 146, no. 3, pp. 239–251, 2005.
[24]
U. S. Yeo and J. K. Shon, “Linkage analysis between some agronomic traits and resistance gene to brown planthopper in rice,” Korean Journal in Plant Breeding, vol. 33, no. 4, pp. 287–293, 2001.
[25]
N. T. Lang, B. C. Buu, and A. M. Ismail, “Molecular mapping and marker assisted selection for salt tolerance in rice (Oryza sativa L.),” Omonrice, vol. 16, pp. 50–56, 2008.
[26]
C. M. F. Elahi, Z. I. Seraj, N. M. Rasul et al., “Breeding rice for salinity tolerance using the Pokkali allele: finding a linked marker,” in In Vitro Culture, TransFormation and Molecular Markers for Crop Improvement, A. S. Islam, Ed., pp. 157–169, Science Publisher, NH, USA, 2004.
[27]
J. Jairin, S. Teangdeerith, P. Leelagud et al., “Development of rice introgression lines with brown planthopper resistance and KDML105 grain quality characteristics through marker-assisted selection,” Field Crops Research, vol. 110, no. 3, pp. 263–271, 2009.
[28]
D. J. Mackill, “Molecular markers and marker-assisted selection in rice,” in Genomic Assisted Crop Improvement, Genomics Applications in Crops, R. K. Varshney and R. Tuberosa, Eds., vol. 2, pp. 147–169, Springer, New York, NY, USA, 2007.
[29]
M. J. Thomson, M. de Ocampo, J. Egdane et al., “Characterizing the saltol quantitative trait locus for salinity tolerance in rice,” Rice, pp. 1–13, 2010.