全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sequence Determination of a Novel Tripeptide Isolated from the Young Leaves of Azadirachta indica A. Juss

DOI: 10.1155/2013/629549

Full-Text   Cite this paper   Add to My Lib

Abstract:

The neem tree has long been recognized for its unique properties, both against insects and in improving human health. Every part of the tree has been used as a traditional medicine for household remedy against various human ailments, from antiquity. Although the occurrence of various phytochemicals in neem has been studied, we have identified the presence of a novel tripeptide in the young leaves of neem using a simple and inexpensive paper chromatographic method, detected by Cu(II)-ninhydrin reagent. The peptide nature of the isolated compound is confirmed by spectral studies. The sequence of the peptide is determined using de novo sequencing by tandem MS after purification. 1. Introduction Small alpha peptides are the most expensive substances, and most of them are not easily available commercially [1]. Pharmacological studies have proved that many peptides, including those isolated from plants, have a potential antitumor effect [2]. These peptides have a number of advantages over other chemical agents including their low molecular weight, relatively simple structure, lower antigenicity, fewer adverse actions, easy absorption, and a variety of routes of administration [3]. Many antibacterial peptide families have been isolated from plants. Pp-thionin, for example, showed activity against Rhizobium meliloti, Xanthomonas campestris, Micrococcus luteus. Circulins A-B and cyclopsychotride A from the cyclotides family showed antibacterial effects against human pathogens such as Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, and Klebsiella oxytoca at micromolar concentrations [4]. Various plant extracts are reported to exhibit high antifungal activity due to proteins or peptides [5]. Cardiovascular activity of milk casein-derived tripeptides has also been reported, where bioactive tripeptide-containing milk products attenuated the blood pressure development in spontaneously hypertensive rats [6]. Research on A. indica has revealed the occurrence of various compounds such as terpenoids, and flavonoids [7, 8]. But the presence of small alpha peptides has not been reported so far. Ninhydrin reactions using manual and automated techniques as well as ninhydrin spray reagents are widely used to analyze and characterize amino acids, peptides, and proteins, as well as numerous other ninhydrin-positive compounds in biomedical, clinical, food, forensic, histochemical, microbiological, nutritional, and plant studies [9–11]. Many of the shortcomings of ninhydrin have been met by the synthesis of a variety of

References

[1]  B. Ramachandramurty, M. Rajeswari Prabha, and K. C. Raja, “A simple method for the production and detection of small alpha peptides from pulses,” IUP Journal of Life Sciences, vol. 4, pp. 50–55, 2010.
[2]  A. Wélé, Y. Zhang, I. Ndoye, J. P. Brouard, J. L. Pousset, and B. Bodo, “A cytotoxic cyclic heptapeptide from the seeds of Annona cherimola,” Journal of Natural Products, vol. 67, no. 9, pp. 1577–1579, 2004.
[3]  N. H. Tan and J. Zhou, “Plant cyclopeptides,” Chemical Reviews, vol. 106, pp. 840–895, 2006.
[4]  P. Barbosa Pelegrini, R. P. Del Sarto, O. N. Silva, O. L. Franco, and M. F. Grossi-De-Sa, “Antibacterial peptides from plants: what they are and how they probably work,” Biochemistry Research International, vol. 2011, Article ID 250349, 9 pages, 2011.
[5]  A. Jamil, M. Shahid, M. Masud-Ul-Haq Khan, and M. Ashraf, “Screening of some medicinal plants for isolation of antifungal proteins and peptides,” Pakistan Journal of Botany, vol. 39, no. 1, pp. 211–221, 2007.
[6]  P. Jakala, E. Pere, R. Lehtinen, A. Turpeinen, R. Korpela, and H. Vapaatalo, “Cardiovascular activity of milk casein-derived tripeptides and plant sterols in spontaneously hypertensive rats,” Journal of Physiology and Pharmacology, vol. 60, no. 4, pp. 11–20, 2009.
[7]  A. Bose, K. Chakraborty, K. Sarkar et al., “Neem leaf glycoprotein directs T-bet-associated type 1 immune commitment,” Human Immunology, vol. 70, no. 1, pp. 6–15, 2009.
[8]  M. K. Roy, M. Kobori, M. Takenaka et al., “Antiproliferative effect on human cancer cell lines after treatment with nimbolide extracted from an edible part of the neem tree (Azadirachta indica),” Phytotherapy Research, vol. 21, no. 3, pp. 245–250, 2007.
[9]  M. Friedman, J. Pang, and G. A. Smith, “Ninhydrin-reactive lysine in food proteins,” Journal of Food Science, vol. 49, pp. 10–13, 1984.
[10]  K. N. Pearce, D. Karahalios, and M. Friedman, “Ninhydrin assay for proteolysis in ripening cheese,” Journal of Food Science, vol. 53, pp. 432–438, 1988.
[11]  M. Friedman, “Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences,” Journal of Agricultural and Food Chemistry, vol. 52, no. 3, pp. 385–406, 2004.
[12]  V. Ganapathy, B. Ramachandramurty, and A. N. Radhakrishnan, “Distinctive test with copper(II)-ninhydrin reagent for small α-peptides separated by paper chromatography,” Journal of Chromatography, vol. 213, no. 2, pp. 307–316, 1981.
[13]  K. S. Nithya and B. Ramachandramurty, “Screening of some selected spices with medicinal value for Cu (II)-ninhydrin positive compounds,” International Journal of Biological Chemistry, vol. 1, pp. 62–68, 2007.
[14]  B. Ramachandramurty and V. N. Satakopan, “Isolation and partial characterization of a small alpha peptide from Cuminum cyminum L. seeds as detected by Cu(II)—ninhydrin reagent,” International Journal of Chemical Sciences, vol. 7, no. 4, pp. 2872–2882, 2009.
[15]  A. R. Goldfarb, L. J. Saidel, and E. Mosovich, “The ultraviolet absorption spectra of proteins,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 397–404, 1951.
[16]  M. Culea, “Amino acids quantitation in biological media,” Studia Universitatis Babesbolyai, vol. 4, pp. 11–15, 2005.
[17]  A. M. Frank, M. M. Savitski, M. L. Nielsen, R. A. Zubarev, and P. A. Pevzner, “De novo peptide sequencing and identification with precision mass spectrometry,” Journal of Proteome Research, vol. 6, no. 1, pp. 114–123, 2007.
[18]  A. R. Fersht, J. P. Shi, J. Knoll-Jones, D. M. Lowe, A. J. Wilkinson, and D. M. Blow, “Hydrogen bonding and biological specificity analysed by protein engineering,” Nature, vol. 314, pp. 235–238, 1985.
[19]  T. Storr, M. Markel, G. X. Song-Zhao et al., “Synthesis, characterisation and metal coordinating ability to multifunctional carbohydrate containing compounds for Alzheimer's therapy,” Journal of the American Chemical Society, vol. 129, no. 23, pp. 4753–7463, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133