Cevimeline is a novel muscarinic acetylcholine receptor agonist currently being developed as a therapeutic agent for xerostomia. We examined the effects of cevimeline on salivary and plasma levels of substance-P- (SP-), calcitonin-gene-related-peptide- (CGRP-), and vasoactive-intestinal-polypeptide- (VIP-) like immunoreactive substances (ISs) in humans. An open-labeled crossover study was conducted on seven healthy volunteers. Saliva volume was measured, and saliva and venous blood samples were collected before and 30–240?min after a single oral dose of cevimeline or placebo. Salivary and plasma levels of SP-, CGRP-, and VIP-IS were measured using a highly sensitive enzyme immunoassay. A single oral dose of cevimeline resulted in significant increases in salivary but not plasma SP-IS level compared to placebo. Cevimeline administration did not alter the salivary or plasma levels of CGRP-IS or VIP-IS compared to placebo. Significant increases in salivary volume were observed after cevimeline administration compared to placebo. A significant correlation was observed between the total release of SP-IS and that of salivary volume. These findings suggest an association of SP with the enhancement of salivary secretion by cevimeline. 1. Introduction The functions of the salivary glands are controlled by the autonomic nervous system and influenced by the sensory nervous system. When parasympathetic impulses dominate, salivary flow is greatly enhanced and the saliva has a low protein content. Studies of animal and human innervation have revealed that parasympathetic nerve fibers are present around acinar cells, ducts, and blood vessels in the major salivary glands [1]. A research has also shown that beside the classic transmitters noradrenaline and acetylcholine, neuropeptides such as substance P (SP), calcitonin gene-related peptide (CGRP), and vasoactive intestinal polypeptide (VIP) (Figure 1) are present in the nerve fibers of the autonomic nervous system as well as in the auriculotemporal nerve, facial nerve, and cervical dorsal root fibers [2]. These neuropeptides are known to cause salivation in rats [2–7]. In recent years, the mechanisms of actions of drugs that used to treat xerostomia have been elucidated pharmacologically from the viewpoint of salivary neuropeptide levels. Anethole trithione and pilocarpine have been shown to elevate SP and CGRP levels in human saliva [8–11]. Figure 1: Structures of substance P (SP), calcitonin gene-related peptide (CGRP), and vasoactive intestinal polypeptide (VIP). Cevimeline hydrochloride hydrate (cevimeline)
References
[1]
N. Emmelin, “Nerve interactions in salivary glands,” Journal of Dental Research, vol. 66, no. 2, pp. 509–517, 1987.
[2]
J. Ekstr?m, “Autonomic control of salivary secretion,” Proceedings of the Finnish Dental Society, vol. 85, no. 4-5, pp. 323–331, 1989.
[3]
J. Ekstr?m, “Neuropeptides and secretion,” Journal of Dental Research, vol. 66, no. 2, pp. 524–530, 1987.
[4]
J. Ekstr?m, B. M?nsson, and G. Tobin, “Vasoactive intestinal peptide evoked secretion of fluid and protein from rat salivary glands and the development of supersensitivity,” Acta Physiologica Scandinavica, vol. 119, no. 2, pp. 169–175, 1983.
[5]
J. Ekstr?m, B. M?nsson, and G. Tobin, “Non-adrenergic, non-cholinergic parasympathetic secretion in the rat submaxillary and sublingual glands,” Pharmacology & Toxicology, vol. 60, no. 4, pp. 284–287, 1987.
[6]
J. Ekstr?m, R. Ekman, R. H?kanson, S. Sjogren, and F. Sundler, “Calcitonin gene-related peptide in rat salivary glands: neuronal localization, depletion upon nerve stimulation, and effects on salivation in relation to substance P,” Neuroscience, vol. 26, no. 3, pp. 933–949, 1988.
[7]
B. Lindh and T. H?kfelt, “Structural and functional aspects of acetylcholine peptide coexistence in the autonomic nervous system,” Progress in Brain Research, vol. 84, pp. 175–191, 1990.
[8]
M. Takeyama, T. Nagano, and K. Ikawa, “Anethole trithione raises levels of substance P in human saliva,” Pharmaceutical Sciences, vol. 2, no. 12, pp. 581–584, 1996.
[9]
T. Nagano, K. Ikawa, and M. Takeyama, “Anethole trithione raises levels of α-calcitonin gene-related peptide in saliva of healthy subjects,” Pharmacy and Pharmacology Communications, vol. 4, no. 9, pp. 459–463, 1998.
[10]
T. Nagano and M. Takeyama, “Enhancement of salivary secretion and neuropeptide (substance P, α-calcitonin gene-related peptide) levels in saliva by chronic anethole trithione treatment,” Journal of Pharmacy and Pharmacology, vol. 53, no. 12, pp. 1697–1702, 2001.
[11]
T. Nagano, H. Itoh, T. Hayashi, and M. Takeyama, “Effect of pilocarpine on levels of substance P and α-calcitonin gene-related peptide in human saliva,” Pharmacy and Pharmacology Communications, vol. 5, no. 9, pp. 571–574, 1999.
[12]
K. J. Bloch, W. W. Buchanan, M. J. Wohl, and J. J. Bunim, “Sj?gren's syndrome. A clinical, pathological, and serological study of sixty-two cases. 1965,” Medicine, vol. 71, no. 6, pp. 386–401, 1992.
[13]
Y. Iwabuchi and T. Masuhara, “Sialogogic activities of SNI-2011 compared with those of pilocarpine and McN-A-343 in rat salivary glands: identification of a potential therapeutic agent for treatment of Sjogren's syndrome,” General Pharmacology, vol. 25, no. 1, pp. 123–129, 1994.
[14]
R. S. Fife, W. F. Chase, R. K. Dore et al., “Cevimeline for the treatment of xerostomia in patients with Sj?gren syndrome: a randomized trial,” Archives of Internal Medicine, vol. 162, no. 11, pp. 1293–1300, 2002.
[15]
I. Dawidson, M. Blom, T. Lundeberg, E. Theodorsson, and B. Angmar-M?nsson, “Neuropeptides in the saliva of healthy subjects,” Life Sciences, vol. 60, no. 4-5, pp. 269–278, 1996.
[16]
T. Naito, H. Itoh, and M. Takeyama, “Effects of Hange-koboku-to (Banxia-houpo-tang) on neuropeptide levels in human plasma and saliva,” Biological and Pharmaceutical Bulletin, vol. 26, no. 11, pp. 1609–1613, 2003.
[17]
P. F. Kohler and M. E. Winter, “A quantitative test for xerostomia. The Saxon test, an oral equivalent of the Schirmer test,” Arthritis and Rheumatism, vol. 28, no. 10, pp. 1128–1132, 1985.
[18]
M. Navazesh and C. M. Christensen, “A comparison of whole mouth resting and stimulated salivary measurement procedures,” Journal of Dental Research, vol. 61, no. 10, pp. 1158–1162, 1982.
[19]
M. Takeyama, K. Mori, F. Takayama, K. Kondo, K. Kitagawa, and N. Fujii, “Enzyme immunoassay of a substance P-like immunoreactive substance in human plasma and saliva,” Chemical and Pharmaceutical Bulletin, vol. 38, no. 12, pp. 3494–3496, 1990.
[20]
T. Nagano, K. Ikawa, and M. Takeyama, “Enzyme immunoassay of calcitonin gene-related peptide in human plasma and saliva,” Japanese Journal of Hospital Pharmacy, vol. 24, no. 1, pp. 363–369, 1998.
[21]
M. Takeyama, K. Wakayama, F. Takayama, K. Kondo, N. Fujii, and H. Yajima, “Micro-enzyme immunoassay of vasoactive intestinal polypeptide (VIP)-like immunoreactive substance in bovine milk,” Chemical and Pharmaceutical Bulletin, vol. 38, no. 4, pp. 960–962, 1990.
[22]
T. Kitagawa, T. Shimozono, T. Aikawa, T. Yoshida, and H. Nishimura, “Preparation and characterization of hetero-bifunctional cross-linking reagents for protein modifications,” Chemical and Pharmaceutical Bulletin, vol. 29, no. 2, pp. 1130–1135, 1981.
[23]
I. L. Gibbins, “Target-related patterns of co-existence of neuropeptide Y, vasoactive intestinal peptide, enkephalin and substance P in cranial parasympathetic neurons innervating the facial skin and exocrine glands of guinea-pigs,” Neuroscience, vol. 38, no. 2, pp. 541–560, 1990.
[24]
D. L. Pikula, E. F. Harris, D. M. Desiderio, G. H. Fridland, and J. L. Lovelace, “Methionine enkephalin-like, substance P-like, and β-endorphin-like immunoreactivity in human parotid saliva,” Archives of Oral Biology, vol. 37, no. 9, pp. 705–709, 1992.
[25]
E. Bobyock and W. S. Chernick, “Vasoactive intestinal peptide interacts with alpha-adrenergic-, cholinergic-, and substance-P-mediated responses in rat parotid and submandibular glands,” Journal of Dental Research, vol. 68, no. 11, pp. 1489–1494, 1989.
[26]
C. Hauser-Kronberger, A. Saria, and G. W. Hacker, “Peptidergic innervation of the human parotid and submandibular salivary glands,” HNO, vol. 40, no. 11, pp. 429–436, 1992.
[27]
O. Larsson, M. Duner-Engstrom, and J. M. Lundberg, “Effects of VIP, PHM and substance P on blood vessels and secretory elements of the human submandibular gland,” Regulatory Peptides, vol. 13, no. 3-4, pp. 319–326, 1986.