全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Systematic Review to Investigate Whether Angiotensin-(1-7) Is a Promising Therapeutic Target in Human Heart Failure

DOI: 10.1155/2013/260346

Full-Text   Cite this paper   Add to My Lib

Abstract:

Context. Heart failure (HF) is a common condition causing much morbidity and mortality despite major advances in pharmacological and device therapies. Preclinical data suggest a cardioprotective role of Angiotensin-(1-7) in animal models of HF. Objective. Perform a systematic review on the effects of Angiotensin-(1-7) on humans, focusing on HF. Results. 39 studies were included in the review (4 in human HF and (35) in non-HF patients). There is only one intervention study on 8 patients with human HF, using Angiotensin-(1-7), with forearm blood flow (FBF) as the endpoint. Angiotensin-(1-7) caused no significant effect on FBF in this HF study but caused vasodilation in 3 out of 4 non-HF studies. In one other non-HF study, Angiotensin-(1-7) infusion led to a significant increase in blood pressure in normal men; however, effects were <0.03% that of angiotensin II. Cardioprotective effects seen in non-HF studies include for instance beneficial actions against atherosclerosis and myocardial fibrosis. Conclusions. The main finding of our systematic review is that Angiotensin-(1-7) plays an important cardioprotective role in HF in animals and in patients without heart failure. More research is required to test the hypothesis that Angiotensin-(1-7) benefits patients with heart failure. 1. Introduction Heart failure (HF) is a major health problem for many developed world populations and has a relatively poor prognosis. Within the US population, the incidence approaches 1%, with a lifetime risk of 1 in 5 for both men and women at the age of 40 years [1]. In 2005, there was an estimated near 1.1 million admissions to American hospitals associated with HF, which was up from approximately 400,000 in 1979 [2]. This substantial increase in prevalence and hospitalisation meant an epidemic was declared [3, 4]. Over the coming years, the prevalence is likely to increase due to changing lifestyles and diets of the developing world, advances in heart failure therapeutics, an increase in prevalence of conditions which have cardiovascular consequences such as obesity and diabetes, and better survival from other heart conditions where HF is the end stage especially with the increased use of primary angioplasty for myocardial infarction. Figures from the United States show an estimated bill totalling $39.2 billion in 2010, to cover the direct and indirect cost of HF [5]. One in 8 death certificates in America mentioned HF, and in 20% of cases, it was the primary cause. In 2006, the number of any-mention deaths from HF was 283,000 [1]. Five-year mortality is 45–60% [6], and

References

[1]  D. Lloyd-Jones, R. J. Adams, T. M. Brown et al., “Executive summary: heart disease and stroke statistics-2010 update: a report from the american heart association,” Circulation, vol. 121, no. 7, pp. e46–e215, 2010.
[2]  T. X. Dallas and American Heart Association, Heart Disease and Stroke Statistics 2008 Update, American Heart Association, Chicago, Ill, USA, 2008.
[3]  P. A. McCullough, E. F. Philbin, J. A. Spertus, S. Kaatz, K. R. Sandberg, and W. D. Weaver, “Confirmation of a heart failure epidemic: findings from the resource utilization among congestive heart failure (REACH) study,” Journal of the American College of Cardiology, vol. 39, no. 1, pp. 60–69, 2002.
[4]  J. B. Croft, W. H. Giles, R. A. Pollard, N. L. Keenan, M. L. Casper, and R. F. Anda, “Heart failure survival among older adults in the United States: a poor prognosis for an emerging epidemic in the Medicare population,” Archives of Internal Medicine, vol. 159, no. 5, pp. 505–510, 1999.
[5]  Centers for Medicare and Medicaid Services, Health Care Financing Review: Medicare and Medicaid Statistical Supplement, Table 5. 5: Discharges, Total Days of Care, and Program Payments for Medicare Beneficiaries Discharged from Short-Stay Hospitals, by Principal Diagnoses Within Major Diagnostic Classifications (MDCs): Calendar Year 2006, Centers for Medicare and Medicaid Services, Baltimore, Md, USA, 2005, http://www.cms.hhs.gov/MedicareMedicaid StatSupp/.
[6]  D. Levy, S. Kenchaiah, M. Glarson et al., “Long-term trends in the incidence of and survival with heart failure,” New England Journal of Medicine, vol. 347, no. 18, pp. 1397–1402, 2002.
[7]  S. M. Dunlay, M. M. Redfield, S. A. Weston et al., “Hospitalizations after heart failure diagnosis. A community perspective,” Journal of the American College of Cardiology, vol. 54, no. 18, pp. 1695–1702, 2009.
[8]  R. J. Goldberg, J. Ciampa, D. Lessard, T. E. Meyer, and F. A. Spencer, “Long-term survival after heart failure: a contemporary population-based perspective,” Archives of Internal Medicine, vol. 167, no. 5, pp. 490–496, 2007.
[9]  C. M. Ferrario and S. N. Iyer, “Angiotensin-(1-7): a bioactive fragment of the renin-angiotensin system,” Regulatory Peptides, vol. 78, no. 1–3, pp. 13–18, 1998.
[10]  C. M. Ferrario, “Angiotensin-(1-7) and antihypertensive mechanisms,” Journal of Nephrology, vol. 11, no. 6, pp. 278–283, 1998.
[11]  R. A. S. Santos, A. C. Simoes e Silva, C. Maric et al., “Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8258–8263, 2003.
[12]  L. S. Zisman, R. S. Keller, B. Weaver et al., “Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme homologue ACE2,” Circulation, vol. 108, no. 14, pp. 1707–1712, 2003.
[13]  D. J. Campbell, C. J. Zeitz, M. D. Esler, and J. D. Horowitz, “Evidence against a major role for angiotensin converting enzyme-related carboxypeptidase (ACE2) in angiotensin peptide metabolism in the human coronary circulation,” Journal of Hypertension, vol. 22, no. 10, pp. 1971–1976, 2004.
[14]  S. Keidar, M. Kaplan, and A. Gamliel-Lazarovich, “ACE2 of the heart: from angiotensin I to angiotensin (1-7),” Cardiovascular Research, vol. 73, no. 3, pp. 463–469, 2007.
[15]  C. M. Ferrario, M. C. Chappell, E. A. Tallant, K. B. Brosnihan, and D. I. Diz, “Counterregulatory actions of angiotensin-(1-7),” Hypertension, vol. 30, no. 3, pp. 535–541, 1997.
[16]  L. A. Calò, S. Schiavo, P. A. Davis et al., “ACE2 and angiotensin 1-7 are increased in a human model of cardiovascular hyporeactivity: pathophysiological implications,” Journal of Nephrology, vol. 23, no. 4, pp. 472–477, 2010.
[17]  C. Mercure, A. Yogi, G. E. Callera et al., “Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart,” Circulation Research, vol. 103, no. 11, pp. 1319–1326, 2008.
[18]  S. Ueda, S. Masumori-Maemoto, K. Ashino et al., “Angiotensin-(1-7) attenuates vasoconstriction evoked by angiotensin II but not by noradrenaline in man,” Hypertension, vol. 35, no. 4, pp. 998–1001, 2000.
[19]  T. Wilsdorf, J. V. Gainer, L. J. Murphey, D. E. Vaughan, and N. J. Brown, “Angiotensin-(1-7) does not affect vasodilator or TPA responses to bradykinin in human forearm,” Hypertension, vol. 37, no. 4, pp. 1136–1140, 2001.
[20]  M. T. Schiavone, R. A. S. Santos, K. B. Brosnihan, M. C. Khosla, and C. M. Ferrario, “Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 11, pp. 4095–4098, 1988.
[21]  R. A. S. Santos, M. J. Campagnole-Santos, and S. P. Andrade, “Angiotensin-(1-7): an update,” Regulatory Peptides, vol. 91, no. 1–3, pp. 45–62, 2000.
[22]  H. Heitsch, S. Brovkovych, T. Malinski, and G. Wiemer, “Angiotensin-(1-7)-stimulated nitric oxide and superoxide release from endothelial cells,” Hypertension, vol. 37, no. 1, pp. 72–76, 2001.
[23]  P. Li, M. C. Chappell, C. M. Ferrario, and K. B. Brosnihan, “Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide,” Hypertension, vol. 29, no. 1, pp. 394–400, 1997.
[24]  G. J. Trachte, K. Meixner, C. M. Ferrario, and M. C. Khosla, “Prostaglandin production in response to angiotensin-(1-7) in rabbit isolated vasa deferentia,” Prostaglandins, vol. 39, no. 4, pp. 385–394, 1990.
[25]  N. Jaiswal, E. A. Tallant, D. I. Diz, M. C. Khosla, and C. M. Ferrario, “Subtype 2 angiotensin receptors mediate prostaglandin synthesis in human astrocytes,” Hypertension, vol. 17, no. 6, pp. 1115–1120, 1991.
[26]  K. B. Brosnihan, P. Li, and C. M. Ferrario, “Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide,” Hypertension, vol. 27, no. 3, pp. 523–528, 1996.
[27]  I. Porsti, A. T. Bara, R. Busse, and M. Hecker, “Release of nitric oxide by angiotensin-(1-7) from porcine coronary endothelium: implications for a novel angiotensin receptor,” British Journal of Pharmacology, vol. 111, no. 3, pp. 652–654, 1994.
[28]  I. F. Benter, C. M. Ferrario, M. Morris, and D. I. Diz, “Antihypertensive actions of angiotensin-(1-7) in spontaneously hypertensive rats,” American Journal of Physiology, vol. 269, no. 1, part 2, pp. H313–H319, 1995.
[29]  L. Fernandes, Z. B. Fortes, D. Nigro, R. C. A. Tostes, R. A. S. Santos, and M. H. Catelli de Carvalho, “Potentiation of bradykinin by angiotensin-(1-7) on arterioles of spontaneously hypertensive rats studied in vivo,” Hypertension, vol. 37, no. 2, part 2, pp. 703–709, 2001.
[30]  R. D. Paula, C. V. Lima, M. C. Khosla, and R. A. S. Santos, “Angiotensin-(1-7) potentiates the hypotensive effect of bradykinin in conscious rats,” Hypertension, vol. 26, no. 6, part 2, pp. 1154–1159, 1995.
[31]  A. P. Davie and J. J. V. McMurray, “Effect of angiotensin-(1-7) and bradykinin in patients with heart failure treated with an ACE inhibitor,” Hypertension, vol. 34, no. 3, pp. 457–460, 1999.
[32]  M. Batlle Perales, F. Perez-Villa, A. Lazaro et al., “The Ang(1-7) mas receptor expression is increased in myocardial tissue from heart failure patients that are in a highly active remodelling stage,” European Journal of Heart Failure, vol. 8, p. ii813, 2009.
[33]  C. M. Ferrario, N. Martell, C. Yunis et al., “Characterization of angeotensin-(1-7) in the urine of normal and essential hypertensive subjects,” American Journal of Hypertension, vol. 11, no. 2, pp. 137–146, 1998.
[34]  A. J. M. Roks, P. P. Van Geel, Y. M. Pinto et al., “Angiotensin-(1-7) is a modulator of the human renin-angiotensin system,” Hypertension, vol. 34, no. 2, pp. 296–301, 1999.
[35]  C. Pan, C. Wen, and C. Lin, “Interplay of angiotensin II and angiotensin(1-7) in the regulation of matrix metalloproteinases of human cardiocytes,” Experimental Physiology, vol. 93, no. 5, pp. 599–612, 2008.
[36]  W. O. Sampaio, C. H. De Castro, R. A. S. Santos, E. L. Schiffrin, and R. M. Touyz, “Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells,” Hypertension, vol. 50, no. 6, pp. 1093–1098, 2007.
[37]  S. Rajendran, Y. Y. Chirkov, D. J. Campbell, and J. D. Horowitz, “Angiotensin-(1-7) enhances anti-aggregatory effects of the nitric oxide donor sodium nitroprusside,” Journal of Cardiovascular Pharmacology, vol. 46, no. 4, pp. 459–463, 2005.
[38]  T. Peltonen, J. N?p?nkangas, P. Ohtonen et al., “(Pro)renin receptors and angiotensin converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in human aortic valve stenosis,” Atherosclerosis, vol. 216, no. 1, pp. 35–43, 2011.
[39]  F. Christofi, S. Wijetunge, P. S. Sever, and A. D. Hughes, “Expression and function of the tissue-renin-angiotensin system in human vascular smooth muscle cells in culture,” Cardiovascular Research, vol. 87, p. S60, 2010.
[40]  W. O. Sampaio, R. A. S. Dos Santos, R. Faria-Silva, L. T. Da Mata Machado, E. L. Schiffrin, and R. M. Touyz, “Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways,” Hypertension, vol. 49, no. 1, pp. 185–192, 2007.
[41]  C. Lin, C. Pan, C. Wen, T. Yang, and T. Kuan, “Regulation of angiotensin converting enzyme II by angiotensin peptides in human cardiofibroblasts,” Peptides, vol. 31, no. 7, pp. 1334–1340, 2010.
[42]  C. Schindler, K. B. Brosnihan, C. M. Ferrario et al., “Comparison of inhibitory effects of irbesartan and atorvastatin treatment on the renin angiotensin system (RAS) in veins: a randomized double-blind crossover trial in healthy subjects,” Journal of Clinical Pharmacology, vol. 47, no. 1, pp. 112–120, 2007.
[43]  S. Rajendran, Y. Y. Chirkov, and J. D. Horowitz, “Potentiation of platelet responsiveness to nitric oxide by angiotensin-(1-7) is associated with suppression of superoxide release,” Platelets, vol. 18, no. 2, pp. 158–164, 2007.
[44]  S. Ueda, S. Masumori-Maemoto, A. Wada, M. Ishii, K. B. Brosnihan, and S. Umemura, “Angiotensin(1-7) potentiates bradykinin-induced vasodilatation in man,” Journal of Hypertension, vol. 19, no. 11, pp. 2001–2009, 2001.
[45]  M. M. Gironacci, H. P. Adamo, G. Corradi, R. A. Santos, P. Ortiz, and O. A. Carretero, “Angiotensin (1-7) induces mas receptor internalization,” Hypertension, vol. 58, no. 2, pp. 176–181, 2011.
[46]  M. Luque, P. Martin, N. Martell, C. Fernandez, K. B. Brosnihan, and C. M. Ferrario, “Effects of captopril related to increased levels of prostacyclin and angiotensin-(1-7) in essential hypertension,” Journal of Hypertension, vol. 14, no. 6, pp. 799–805, 1996.
[47]  N. Hayashi, K. Yamamoto, M. Ohishi et al., “The counterregulating role of ACE2 and ACE2-mediated angiotensin 1-7 signaling against angiotensin II stimulation in vascular cells,” Hypertension Research, vol. 33, no. 11, pp. 1182–1185, 2010.
[48]  L. S. Zisman, G. E. Meixell, M. R. Bristow, and C. C. Canver, “Angiotensin-(1-7) formation in the intact human heart: in vivo dependence on angiotensin II as substrate,” Circulation, vol. 108, no. 14, pp. 1679–1681, 2003.
[49]  P. E. Gallagher and E. A. Tallant, “Inhibition of human lung cancer cell growth by angiotensin-(1-7),” Carcinogenesis, vol. 25, no. 11, pp. 2045–2052, 2004.
[50]  A. Pignone, A. Del Rosso, K. B. Brosnihan et al., “Reduced circulating levels of angiotensin-(1-7) in systemic sclerosis: a new pathway in the dysregulation of endothelial-dependent vascular tone control,” Annals of the Rheumatic Diseases, vol. 66, no. 10, pp. 1305–1310, 2007.
[51]  A. C. S. E. Silva, J. S. S. Diniz, A. Regueira Filho, and R. A. S. Santos, “The renin angiotensin system in childhood hypertension: selective increase of angiotensin-(1-7) in essential hypertension,” Journal of Pediatrics, vol. 145, no. 1, pp. 93–98, 2004.
[52]  A. C. Sim?es E Silva, J. S. S. Diniz, R. M. Pereira, S. V. B. Pinheiro, and R. A. S. Santos, “Circulating renin angiotensin system in childhood chronic renal failure: marked increase of angiotensin-(1-7) in end-stage renal disease,” Pediatric Research, vol. 60, no. 6, pp. 734–739, 2006.
[53]  G. Nickenig, G. Geisen, H. Vetter, and A. Sachinidis, “Characterization of angiotensin receptors on human skin fibroblasts,” Journal of Molecular Medicine, vol. 75, no. 3, pp. 217–222, 1997.
[54]  L. Anton, D. C. Merrill, L. A. A. Neves, and K. B. Brosnihan, “Angiotensin-(1-7) inhibits in vitro endothelial cell tube formation in human umbilical vein endothelial cells through the AT1-7 receptor,” Endocrine, vol. 32, no. 2, pp. 212–218, 2007.
[55]  L. Villalobos, T. Romacho, E. Cercas, E. Palacios, C. Sanchez Ferrer, and C. Peir, “The angiotensin-(1-7)/Mas receptor axis exhibits anti-inflammatory properties in human vascular smooth muscle cells,” European Journal of Clinical Pharmacology, vol. 66, p. S40, 2010.
[56]  A. C. Montezano, H. Yusuf, R. A. Santos, C. H. Castro, and R. M. Touyz, “Angiotensin 1-7 attenuates growth and inflammation induced by ET-1 in human endothelial cells-Crosstalk between mas and ETB receptors,” Hypertension, vol. 56, no. 5, p. e144, 2010.
[57]  T. Peltonen, J. Napankangas, P. Ohtonen et al., “Defining local renin-angiotensin system in human aortic valve stenosis: gene-expression of ACE2 and mas receptor in stenotic valves,” Cardiology, vol. 115, no. 4, pp. 281–282, 2010.
[58]  Y. Zhiming, “A study on effects of Ang II and Ang-(107) on cholesterol efflux in THP-1 human macrophages,” Circulation, vol. 122, no. 2, p. e139, 2010.
[59]  M. Vzquez-Bella, S. Valleja, V. Azcutia et al., “The role of the angiotensin-(1-7)/receptor Mas axis in endothelial dysfunction,” Methods and Findings in Experimental and Clinical Pharmacology A, vol. 31, supplement 6, p. 140, 2009.
[60]  R. A. S. Santos, K. B. Brosnihan, D. W. Jacobsen, P. E. DiCorleto, and C. M. Ferrario, “Production of angiotensin-(1-7) by human vascular endothelium,” Hypertension, vol. 19, supplement 2, pp. II56–II61, 1992.
[61]  C. Hermenegildo, A. Sobrino, E. Monsalve et al., “Angiotensin 1-7 mas receptor mediates nitric oxide production induced by estradiol in endothelial cells,” European Journal of Clinical Pharmacology, vol. 66, p. S40, 2010.
[62]  T. Kono, A. Taniguchi, and H. Imura, “Biological activities of angiotensin II-(1-6)-hexapeptide and angiotensin II-(1-7)-heptapeptide in man,” Life Sciences, vol. 38, no. 16, pp. 1515–1519, 1986.
[63]  S. Sasaki, Y. Higashi, K. Nakagawa, H. Matsuura, G. Kajiyama, and T. Oshima, “Effects of angiotensin-(1-7) on forearm circulation in normotensive subjects and patients with essential hypertension,” Hypertension, vol. 38, no. 1, pp. 90–94, 2001.
[64]  L. A. Calò, S. Schiavo, P. A. Davis et al., “ACE2 and angiotensin 1-7 are increased in a human model of cardiovascular hyporeactivity: pathophysiological implications,” Journal of Nephrology, vol. 23, no. 4, pp. 472–477, 2010.
[65]  N. Benjamin, J. R. Cockcroft, J. G. Collier, C. T. Dollery, J. M. Ritter, and D. J. Webb, “Local inhibition of converting enzyme and vascular responses to angiotensin and bradykinin in the human forearm,” Journal of Physiology, vol. 412, pp. 543–555, 1989.
[66]  O. Von Bohlen und Halbach, T. Walther, M. Bader, and D. Albrecht, “Genetic deletion of angiotensin AT2 receptor leads to increased cell numbers in different brain structures of mice,” Regulatory Peptides, vol. 99, no. 2-3, pp. 209–216, 2001.
[67]  A. B. Goulter, M. J. Goddard, J. C. Allen, and K. L. Clark, “ACE2 gene expression is up-regulated in the human failing heart,” BMC Medicine, vol. 2, p. 19, 2004.
[68]  Y. Y. Li, A. M. Feldman, Y. Sun, and C. F. McTiernan, “Differential expression of tissue inhibitors of metalloproteinases in the failing human heart,” Circulation, vol. 98, no. 17, pp. 1728–1734, 1998.
[69]  F. G. Spinale, M. L. Coker, L. J. Heung et al., “A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure,” Circulation, vol. 102, no. 16, pp. 1944–1949, 2000.
[70]  B. Schwartzkopff, M. Fassbach, B. Pelzer, M. Brehm, and B. E. Strauer, “Elevated serum markers of collagen degradation in patients with mild to moderate dilated cardiomyopathy,” European Journal of Heart Failure, vol. 4, no. 4, pp. 439–444, 2002.
[71]  K. Yamamoto, M. C. Chappell, K. B. Brosnihan, and C. M. Ferrario, “In vivo metabolism of angiotensin I by neutral endopeptidase (EC 3.4.24.11) in spontaneously hypertensive rats,” Hypertension, vol. 19, supplement 6, pp. 692–696, 1992.
[72]  J. G. F. Cleland, J. Daubert, E. Erdmann et al., “The effect of cardiac resynchronization on morbidity and mortality in heart failure,” New England Journal of Medicine, vol. 352, no. 15, pp. 1539–1549, 2005.
[73]  C. Peiró, S. Vallejo, F. Gembardt et al., “Endothelial dysfunction through genetic deletion or inhibition of the G protein-coupled receptor Mas: a new target to improve endothelial function,” Journal of Hypertension, vol. 25, no. 12, pp. 2421–2425, 2007.
[74]  Y. Wang, C. Qian, A. J. M. Roks et al., “Circulating rather than cardiac angiotensin-(1-7) stimulates cardioprotection after myocardial infarction,” Circulation, vol. 3, no. 2, pp. 286–293, 2010.
[75]  L. Ebermann, F. Spillmann, M. Sidiropoulos et al., “The angiotensin-(1-7) receptor agonist AVE0991 is cardioprotective in diabetic rats,” European Journal of Pharmacology, vol. 590, no. 1–3, pp. 276–280, 2008.
[76]  S. Heringer-Walther, K. Eckert, S. Schumacher et al., “Angiotensin-(1-7) stimulates hematopoietic progenitor cells in vitro and in vivo,” Haematologica, vol. 94, no. 6, pp. 857–860, 2009.
[77]  W. J. Petty, A. A. Miller, T. P. McCoy, P. E. Gallagher, E. A. Tallant, and F. M. Torti, “Phase I and pharmacokinetic study of angiotensin-(1-7), an endogenous antiangiogenic hormone,” Clinical Cancer Research, vol. 15, no. 23, pp. 7398–7404, 2009.
[78]  K. E. Rodgers, J. Oliver, and G. S. DiZerega, “Phase I/II dose escalation study of angiotensin 1-7 [A(1-7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer,” Cancer Chemotherapy and Pharmacology, vol. 57, no. 5, pp. 559–568, 2006.
[79]  J. L. Grobe, A. P. Mecca, H. Mao, and M. J. Katovich, “Chronic angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of hypertension,” American Journal of Physiology, vol. 290, no. 6, pp. H2417–H2423, 2006.
[80]  A. J. Ferreira, V. Shenoy, Y. Qi et al., “Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases,” Experimental Physiology, vol. 96, no. 3, pp. 287–294, 2011.
[81]  C. Schindler, P. Bramlage, W. Kirch, and C. M. Ferrario, “Role of the vasodilator peptide angiotensin-(1-7) in cardiovascular drug therapy,” Vascular Health and Risk Management, vol. 3, no. 1, pp. 125–137, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133