全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Approximation for Nonlinear Gas Dynamic Equation

DOI: 10.1155/2013/846749

Full-Text   Cite this paper   Add to My Lib

Abstract:

Laplace transform and new homotopy perturbation methods are adopted to study gas dynamic equation analytically. The solutions introduced in this study can be used to obtain the closed form of the solutions if they are required. The combined method needs less work in comparison with the other homotopy perturbation methods and decreases volume of calculations considerably. Results show that the new method is more effective and convenient to use, and is high accuracy evident. 1. Introduction Many phenomena in engineering, physics, chemistry, and other sciences can be described very successfully by nonlinear models. Except in a limited number of these problems, we have difficulty in finding their exact analytical solutions. Therefore, there have been attempts to develop new techniques for obtaining analytical solutions which reasonably approximate the exact solutions [1]. In recent decades, numerical calculation methods were good means of analyzing the nonlinear equations, but as the numerical calculation methods improved, analytical methods did, too. Most scientists believe that the combination of numerical and analytical methods can also end with useful results. In recent years, several of such techniques have drawn special attention, such as homotopy perturbation method. In the recent years, an increasing interest of scientists and engineers has been devoted to the analytical asymptotic techniques for solving nonlinear problems. Many new numerical techniques have been widely applied to the nonlinear problems. Based on homotopy, which is a basic concept in topology, general analytical method, namely, the homotopy perturbation method (HPM) is established by He [2–8] in 1998 to obtain series solutions of nonlinear differential equations. The He’s HPM has been already used to solve various functional equations. In this method, the nonlinear problem is transferred to an infinite number of subproblems, and then the solution is approximated by the sum of the solutions of the first several subproblems. This simple method has been applied to solve linear and nonlinear equations of heat transfer [9–11], fluid mechanics [12], nonlinear Schrodinger equations [13], integral equations [14], boundary value problems [15], fractional KdV-Burgers equation [16], nonlinear system of second-order boundary value problems [17], and delay differential equations [18]. The equations of gas dynamics are mathematical expressions based on the physical laws of conservation, namely, the laws of conservation of mass, conservation of momentum, conservation of energy, and so forth. The

References

[1]  A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley-Interscience, New York, NY, USA, 1981.
[2]  J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999.
[3]  J.-H. He, “Coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000.
[4]  J.-H. He, “Addendum: new interpretation of homotopy perturbation method,” International Journal of Modern Physics B, vol. 20, no. 18, pp. 2561–2568, 2006.
[5]  J.-H. He, “Recent development of the homotopy perturbation method,” Topological Methods in Nonlinear Analysis, vol. 31, no. 2, pp. 205–209, 2008.
[6]  J.-H. He, “The homotopy perturbation method for nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287–292, 2004.
[7]  J.-H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 695–700, 2005.
[8]  J.-H. He, “Limit cycle and bifurcation of nonlinear problems,” Chaos, Solitons and Fractals, vol. 26, no. 3, pp. 827–833, 2005.
[9]  A. Rajabi, D. D. Ganji, and H. Taherian, “Application of homotopy perturbation method in nonlinear heat conduction and convection equations,” Physics Letters A, vol. 360, no. 4-5, pp. 570–573, 2007.
[10]  D. D. Ganji and A. Sadighi, “Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 24–34, 2007.
[11]  D. D. Ganji, “The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer,” Physics Letters A, vol. 355, no. 4-5, pp. 337–341, 2006.
[12]  S. Abbasbandy, “A numerical solution of Blasius equation by Adomian's decomposition method and comparison with homotopy perturbation method,” Chaos, Solitons and Fractals, vol. 31, no. 1, pp. 257–260, 2007.
[13]  J. Biazar and H. Ghazvini, “Exact solutions for non-linear Schr?dinger equations by He's homotopy perturbation method,” Physics Letters A, vol. 366, no. 1-2, pp. 79–84, 2007.
[14]  S. Abbasbandy, “Numerical solutions of the integral equations: homotopy perturbation method and Adomian's decomposition method,” Applied Mathematics and Computation, vol. 173, no. 1, pp. 493–500, 2006.
[15]  J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87–88, 2006.
[16]  Q. Wang, “Homotopy perturbation method for fractional KdV-Burgers equation,” Chaos, Solitons and Fractals, vol. 35, no. 5, pp. 843–850, 2008.
[17]  E. Yusufo?lu, “Homotopy perturbation method for solving a nonlinear system of second order boundary value problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 3, pp. 353–358, 2007.
[18]  J. Biazar and B. Ghanbari, “The homotopy perturbation method for solving neutral functional-differential equations with proportional delays,” Journal of King Saud University, vol. 24, no. 1, pp. 33–37, 2012.
[19]  D. J. Evans and H. Bulut, “A new approach to the gas dynamics equation: an application of the decomposition method,” International Journal of Computer Mathematics, vol. 79, no. 7, pp. 817–822, 2002.
[20]  A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004.
[21]  T. G. Elizarova, Quasi-Gas Dynamic Equations, Computational Fluid and Solid Mechanics, Springer, Dordrecht, The Netherlands, 2009.
[22]  H. Jafari, C. Chun, S. Seifi, and M. Saeidy, “Analytical solution for nonlinear gas dynamic equation by homotopy analysis method,” Applications and Applied Mathematics, vol. 4, no. 1, pp. 149–154, 2009.
[23]  W. F. Ames, Nonlinear Partial Differential Equations in Engineering, Academic Press, New York, NY, USA, 1965.
[24]  M. Rasulov and T. Karaguler, “Finite difference schemes for solving system equations of gas dynamic in a class of discontinuous functions,” Applied Mathematics and Computation, vol. 143, no. 1, pp. 145–164, 2003.
[25]  H. Aminikhah and A. Jamalian, “An analytical approximation for boundary layer flow convection heat and mass transfer over a flat plate,” The Journal of Mathematics and Computer Science, vol. 5, no. 4, pp. 241–257, 2012.
[26]  H. Aminikhah, F. Mehrdoust, and A. Jamalian, “A new efficient method for nonlinear Fisher-type equations,” Journal of Applied Mathematics, vol. 2012, Article ID 586454, 18 pages, 2012.
[27]  H. Aminikhah and A. Jamalian, “A new efficient method for solving the nonlinear Fokker-Planck equation,” Scientia Iranica, vol. 19, pp. 1133–1139, 2012.
[28]  H. Aminikhah and M. Hemmatnezhad, “An efficient method for quadratic Riccati differential equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 4, pp. 835–839, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133