全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Probabilistic Representations for the Solution of Higher Order Differential Equations

DOI: 10.1155/2013/297857

Full-Text   Cite this paper   Add to My Lib

Abstract:

A probabilistic representation for the solution of the partial differential equation , is constructed in terms of the expectation with respect to the measure associated to a complex-valued stochastic process. 1. Introduction The connection between the solution of parabolic equations associated to second-order elliptic operators and the theory of stochastic processes is a largely studied topic [1]. The main instance is the Feynman-Kac formula, providing a representation of the solution of the heat equation with potential (the continuous functions vanishing at infinity): in terms of an integral with respect to the measure of the Wiener process, the mathematical model of the Brownian motion [2]: If the Laplacian in (1) is replaced with a higher order differential operator, that is, if we consider a Cauchy problem of the form with , , then a formula analogous to (2), giving the solution of (3) in terms of the expectation with respect to the measure associated to a Markov process, is lacking. In fact, such a formula cannot be proved for semigroups whose generator does not satisfy the maximum principle, as in the case of with . In fact in the case where the Cauchy problem (3) is not well posed on the space of continuous bounded functions [3]. In other words it is not possible to find a stochastic process which plays for the parabolic equation (3) the same role that the Wiener process plays for the heat equation. We would like to point out that the problem of the probabilistic representation of the solution of the Cauchy problem (3) presents some similarities with the problem of the mathematical definition of Feynman path integrals (see [4–7] for a discussion of this topic). Indeed in both cases it is not possible to implement an integration theory of Lebesgue type in terms of a bounded variation measure on a space of continuous paths [8]. An analogous of the Feynman-Kac formula for the parabolic equation (3), namely, an equation of the form (where should be some “measure” on a space of “paths” ), can be obtained only under some restrictions on and and by giving up a traditional integration theory in the Lebesgue sense with respect to a bounded variation measure on a space of (real) continuous paths. In the mathematical literature two main approaches have been proposed. The first one [9, 10] realizes formula (4) in terms of the expectation with respect to a signed measure on a space of paths on the interval . It is worthwhile to mention that an analogous of the arc-sine law [10, 11], of the central limit theorem [12], and of Ito formula and Ito stochastic

References

[1]  E. B. Dynkin, Theory of Markov Processes, Dover, Mineola, NY, USA, 2006.
[2]  I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, NY, USA, 1991.
[3]  E. Sinestrari, “Accretive differential operators,” Bollettino della Unione Matematica Italiana B, vol. 13, no. 1, pp. 19–31, 1976.
[4]  S. Albeverio, “Wiener and feynman path integrals and their applications,” Proceedings of Symposia in Applied Mathematics, vol. 52, pp. 163–194, 1997.
[5]  S. Albeverio, R. Hoegh-Krohn, and S. Mazzucchi, Mathematical Theory of Feynman Path Integrals—An Introduction, vol. 523 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2nd edition, 2008.
[6]  S. Mazzucchi, Mathematical Feynman Path Integrals and Applications, World Scientific, Singapore, 2009.
[7]  G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman’s Operational Calculus, Oxford University Press, New York, NY, USA, 2000.
[8]  R. H. Cameron, “A family of integrals serving to connect the wiener and feynman integrals,” Journal of Mathematical Physics, vol. 39, pp. 126–140, 1960.
[9]  V. Y. Krylov, “Some properties of the distribution corresponding to the equation ,” Doklady Akademii Nauk SSSR, vol. 132, pp. 1254–1257, 1960 (Russian), translated as Soviet Mathematics Doklady, vol. 1, pp. 760–763.
[10]  K. Hochberg, “A signed measure on path space related to wiener measure,” Annals of Probability, vol. 6, no. 3, pp. 433–458, 1978.
[11]  K. Hochberg and E. Orsingher, “The arc-sine law and its analogs for processes governed by signed and complex measures,” Stochastic Processes and Their Applications, vol. 52, no. 2, pp. 273–292, 1994.
[12]  K. Hochberg, “Central limit theorem for signed distributions,” Proceedings of the American Mathematical Society, vol. 79, no. 2, pp. 298–302, 1980.
[13]  K. Nishioka, “Stochastic calculus for a class of evolution equations,” Japanese Journal of Mathematics, vol. 11, no. 1, pp. 59–102, 1985.
[14]  L. Beghin, K. J. Hochberg, and E. Orsingher, “Conditional maximal distributions of processes related to higher-order heat-type equations,” Stochastic Processes and Their Applications, vol. 85, no. 2, pp. 209–223, 2000.
[15]  D. Levin and T. Lyons, “A signed measure on rough paths associated to a PDE of high order: results and conjectures,” Revista Matematica Iberoamericana, vol. 25, no. 3, pp. 971–994, 2009.
[16]  T. Funaki, “Probabilistic construction of the solution of some higher order parabolic differential equation,” Proceedings of the Japan Academy A, vol. 55, no. 5, pp. 176–179, 1979.
[17]  K. Hochberg and E. Orsingher, “Composition of stochastic processes governed by higher-order parabolic and hyperbolic equations,” Journal of Theoretical Probability, vol. 9, no. 2, pp. 511–532, 1996.
[18]  E. Orsingher and X. Zhao, “Iterated processes and their applications to higher order differential equations,” Acta Mathematica Sinica, vol. 15, no. 2, pp. 173–180, 1999.
[19]  S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley, Calif, USA, 1955.
[20]  K. Burdzy, “Some path properties of iterated brownian motion,” in Seminar on Stochastic Processes, vol. 33 of Progress in Probability, pp. 67–87, Birkh?user, Boston, Mass, USA, 1993.
[21]  H. Allouba, “Brownian-time processes: the PDE connection II and the corresponding feynman-kac formula,” Transactions of the American Mathematical Society, vol. 354, no. 11, pp. 4627–4637, 2002.
[22]  A. Madrecki and M. Rybaczuk, “New feynman-kac type formula,” Reports on Mathematical Physics, vol. 32, no. 3, pp. 301–327, 1993.
[23]  K. Burdzy and A. Madrecki, “An asymptotically 4-stable process,” in Proceedings of the the Conference in Honor of Jean-Pierre Kahane, pp. 97–117, Journal of Fourier Analysis and Applications, Orsay, France, June 1993.
[24]  K. Burdzy and A. Madrecki, “Ito formula for an asymptotically 4-stable process,” Annals of Applied Probability, vol. 6, no. 1, pp. 200–217, 1996.
[25]  P. Sainty, “Construction of a complex-valued fractional brownian motion of order N,” Journal of Mathematical Physics, vol. 33, no. 9, pp. 3126–3149, 1992.
[26]  R. Léandre, “Stochastic analysis without probability: study of some basic tools,” Journal of Pseudo-Differential Operators and Applications, vol. 1, no. 4, pp. 389–400, 2010.
[27]  R. Léandre, “A path-integral approach to the Cameron-Martin-Maruyama-Girsanov formula associated to a bilaplacian,” Journal of Function Spaces and Applications, vol. 2012, Article 458738, 9 pages, 2012.
[28]  T. Hida, H. H. Kuo, J. Potthoff, and L. Streit, White Noise, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.
[29]  R. Léandre, “Path integrals in noncommutative geometry,” in Encyclopedia of Mathematical Physics, J. P. Francoise, G. Naber, and S. T. Tsou, Eds., pp. 8–12, Elsevier, Oxford, UK, 2006.
[30]  R. Léandre, “Theory of distribution in the sense of connes-hida and feynman path integral on a manifold,” Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol. 6, no. 4, pp. 505–517, 2003.
[31]  Yu. L. Daletsky and S. V. Fomin, Measures and Differential Equations in Infinitedimensional Space, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
[32]  N. V. Smorodina and M. M. Faddeev, “Probabilistic representation of solutions for a class of evolution equations,” Journal of Mathematical Sciences, vol. 176, no. 2, pp. 239–254, 2011.
[33]  L. L. Helms, “Biharmonic functions and brownian motion,” Journal of Applied Probability, vol. 4, pp. 130–136, 1967.
[34]  L. R. Bragg and J. W. Dettman, “Related problems in partial differential equations,” Bulletin of the American Mathematical Society, vol. 74, pp. 375–378, 1968.
[35]  R. J. Griego and R. Hersh, “Random evolutions, Markov chains, and systems of partial differential equations,” Proceedings of the National Academy of Sciences of the USA, vol. 62, pp. 305–308, 1969.
[36]  R. Hersh, “Direct solution of general one-dimensional linear parabolic equation via an abstract plancherel formula,” Proceedings of the National Academy of Sciences of the USA, vol. 63, pp. 648–654, 1969.
[37]  R. Hersh, “Explicit solution of a class of higher-order abstract cauchy problems,” Journal of Differential Equations, vol. 8, no. 3, pp. 570–579, 1970.
[38]  R. Hersh, “The method of transmutations,” in Partial Differential Equations and Related Topics, vol. 446 of Lecture Notes in Mathematics, pp. 264–282, Springer, Berlin, Germany, 1975.
[39]  B. Gaveau and P. Sainty, “A path integral formula for certain fourth-order elliptic operators,” Letters in Mathematical Physics, vol. 15, no. 4, pp. 345–350, 1988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133