全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Numerical Method for Solving 3D Elasticity Equations with Sharp-Edged Interfaces

DOI: 10.1155/2013/476873

Full-Text   Cite this paper   Add to My Lib

Abstract:

Interface problems occur frequently when two or more materials meet. Solving elasticity equations with sharp-edged interfaces in three dimensions is a very complicated and challenging problem for most existing methods. There are several difficulties: the coupled elliptic system, the matrix coefficients, the sharp-edged interface, and three dimensions. An accurate and efficient method is desired. In this paper, an efficient nontraditional finite element method with nonbody-fitting grids is proposed to solve elasticity equations with sharp-edged interfaces in three dimensions. The main idea is to choose the test function basis to be the standard finite element basis independent of the interface and to choose the solution basis to be piecewise linear satisfying the jump conditions across the interface. The resulting linear system of equations is shown to be positive definite under certain assumptions. Numerical experiments show that this method is second order accurate in the norm for piecewise smooth solutions. More than 1.5th order accuracy is observed for solution with singularity (second derivative blows up). 1. Introduction The macroscopic mechanical response of most elastic materials, such as wood, metal, rubber, rock, and bone, can be described by the elasticity theory. However, the numerical solution for an elasticity problem with interface is highly nontrivial, because the coefficients in the partial differential equation for elasticity system are discontinuous, and the solution to the PDE system also needs to satisfy the jump conditions across each material interface. Examples of elasticity interface problem include the minimum-compliance-design problems [1], the microstructural evolution [2], and the atomic interactions [3]. Designing an accurate and efficient method for these problems is a difficult job, especially when the interface is not smooth. In this paper, we consider a three-dimensional elasticity problem with sharp-edged interfaces and matrix coefficients. The model of interest is as follows. Consider an open bounded domain . Let be an interface of codimension , which divides into disjoint open subdomains, and , hence . Assume that the boundary and the boundary of each subdomain are Lipschitz continuous as submanifolds. Since are Lipschitz continuous, so is . A unit normal vector of can be defined as a.e. on ; see Section 1.5 in [4]. We seek solutions of the variable coefficient elliptic equation away from the interface given by in which denotes the spatial variables and is the gradient operator. The coefficient is assumed to be a

References

[1]  T. Lin, D. Sheen, and X. Zhang, “A locking-free immersed finite element method for planar elasticity interface problems,” Journal of Computational Physics, vol. 247, pp. 228–247, 2013.
[2]  H.-J. Jou, P. H. Leo, and J. S. Lowengrub, “Microstructural evolution in inhomogeneous elastic media,” Journal of Computational Physics, vol. 131, no. 1, pp. 109–148, 1997.
[3]  H. Gao, Y. Huang, and F. F. Abraham, “Continuum and atomistic studies of intersonic crack propagation,” Journal of the Mechanics and Physics of Solids, vol. 49, no. 9, pp. 2113–2132, 2001.
[4]  P. Grisvard, Elliptic Problems in Nonsmooth Domains—Monographs and Studies in Mathematics, Pitman Advanced Publishing Program, 1985.
[5]  A. Quarteroni, Numerical Models for Differential Problems, Springer, Berlin, Germany, 2009.
[6]  A. Quarteroni and R. Sacco, Numerical Approximation of Partial Differential Equations, Springer, Berlin, Germany, 1994.
[7]  R. H. Nochetto, M. Paolini, and C. Verdi, “An adaptive finite element method for two-phase stefan problem in two space dimensions, part II: implementation and numerical experiments,” SIAM Journal on Scientific and Statistical Computing, vol. 12, pp. 1207–1244, 1991.
[8]  A. Schmidt, “Computation of three dimensional dendrites with finite elements,” Journal of Computational Physics, vol. 125, no. 2, pp. 293–312, 1996.
[9]  C. S. Peskin, “Numerical analysis of blood flow in the heart,” Journal of Computational Physics, vol. 25, no. 3, pp. 220–252, 1977.
[10]  C. S. Peskin, “Improved volume conservation in the computation of flows with immersed elastic boundaries,” Journal of Computational Physics, vol. 105, no. 1, pp. 33–46, 1993.
[11]  M. Sussman, “A level set approach for computing solutions to incompressible two-phase flow,” Journal of Computational Physics, vol. 114, no. 1, pp. 146–159, 1994.
[12]  R. J. Leveque and Z. Li, “Immersed interface method for elliptic equations with discontinuous coefficients and singular sources,” SIAM Journal on Numerical Analysis, vol. 31, no. 4, pp. 1019–1044, 1994.
[13]  Y. C. Zhou, S. Zhao, M. Feig, and G. W. Wei, “High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources,” Journal of Computational Physics, vol. 213, no. 1, pp. 1–30, 2006.
[14]  S. Yu, Y. Zhou, and G. W. Wei, “Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces,” Journal of Computational Physics, vol. 224, no. 2, pp. 729–756, 2007.
[15]  S. N. Yu and G. W. Wei, “Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities,” Journal of Computational Physics, vol. 227, pp. 602–632, 2007.
[16]  Z. Li, T. Lin, and X. Wu, “New Cartesian grid methods for interface problems using the finite element formulation,” Numerische Mathematik, vol. 96, no. 1, pp. 61–98, 2003.
[17]  Y. Gong, B. Li, and Z. Li, “Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions,” SIAM Journal on Numerical Analysis, vol. 46, no. 1, pp. 472–495, 2007.
[18]  Z. Chen, Y. Xiao, and L. Zhang, “The adaptive immersed interface finite element method for elliptic and Maxwell interface problems,” Journal of Computational Physics, vol. 228, no. 14, pp. 5000–5019, 2009.
[19]  N. Mo?s, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, vol. 46, no. 1, pp. 131–150, 1999.
[20]  G. J. Wagner, N. Mo?s, W. K. Liu, and T. Belytschko, “The extended finite element method for rigid particles in Stokes flow,” International Journal for Numerical Methods in Engineering, vol. 51, no. 3, pp. 293–313, 2001.
[21]  J. Chessa and T. Belytschko, “An extended finite element method for two-phase fluids,” Journal of Applied Mechanics, vol. 70, no. 1, pp. 10–17, 2003.
[22]  X. Yang, B. Li, and Z. Li, “The immersed interface method for elasticity problems with interfaces,” Dynamics of Continuous, Discrete and Impulsive Systems A, vol. 10, no. 5, pp. 783–808, 2003.
[23]  X. Yang, Immersed interface method for elasticity problems with interfaces [Ph.D. thesis], North Carolina State University.
[24]  Y. Gong and Z. Li, “Immersed interface finite element methods for elasticity interface problems with non-homogeneous jump conditions,” Numerical Mathematics, vol. 3, no. 1, pp. 23–39, 2010.
[25]  M. Oevermann, C. Scharfenberg, and R. Klein, “A sharp interface finite volume method for elliptic equations on Cartesian grids,” Journal of Computational Physics, vol. 228, no. 14, pp. 5184–5206, 2009.
[26]  J. Bedrossian, J. H. von Brecht, S. Zhu, E. Sifakis, and J. M. Teran, “A second order virtual node method for elliptic problems with interfaces and irregular domains,” Journal of Computational Physics, vol. 229, no. 18, pp. 6405–6426, 2010.
[27]  S. Hou, Z. Li, L. Wang, and W. Wang, “A numerical method for solving elasticity equations with interfaces,” Communications in Computational Physics, vol. 12, no. 2, pp. 595–612, 2012.
[28]  S. Hou, W. Wang, and L. Wang, “Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces,” Journal of Computational Physics, vol. 229, no. 19, pp. 7162–7179, 2010.
[29]  S. Hou, L. Wang, and W. Wang, “A numerical method for solving the elliptic interface problems with multi-domains and triple junction points,” Journal of Computational Mathematics, vol. 30, no. 5, pp. 504–516, 2012.
[30]  S. Hou, P. Song, L. Wang, and H. Zhao, “A weak formulation for solving elliptic interface problems without body fitted grid,” Journal of Computational Physics, vol. 249, pp. 80–95, 2013.
[31]  S. Hou and X.-D. Liu, “A numerical method for solving variable coefficient elliptic equation with interfaces,” Journal of Computational Physics, vol. 202, no. 2, pp. 411–445, 2005.
[32]  J. Necas, Introduction to the Theory of Nonlinear Elliptic Equations, Teubner-Texte zur Mathematik, Band 52, 1983.
[33]  X. U.-D. Liu and T. C. Sideris, “Convergence of the ghost fluid method for elliptic equations with interfaces,” Mathematics of Computation, vol. 72, no. 244, pp. 1731–1746, 2003.
[34]  X.-D. Liu, R. P. Fedkiw, and M. Kang, “A boundary condition capturing method for Poisson’s equation on irregular domains,” Journal of Computational Physics, vol. 160, no. 1, pp. 151–178, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133