全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Posteriori Regularization Parameter Choice Rule for Truncation Method for Identifying the Unknown Source of the Poisson Equation

DOI: 10.1155/2013/590737

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the problem of determining an unknown source which depends only on one variable in two-dimensional Poisson equation. We prove a conditional stability for this problem. Moreover, we propose a truncation regularization method combined with an a posteriori regularization parameter choice rule to deal with this problem and give the corresponding convergence estimate. Numerical results are presented to illustrate the accuracy and efficiency of this method. 1. Introduction Inverse source problems arise in many branches of science and engineering, for example, heat conduction, crack identification, electromagnetic theory, geophysical prospecting, and pollutant detection. In this paper, we consider the following inverse problem: to find a pair of functions satisfying where is the unknown source depending only on one spatial variable and is the supplementary condition. In applications, input data can only be measured, and there will be measured data function which is merely in and satisfies where the constant represents a bound on the measurement error. For the heat equation, there has been a large number of research results for the different forms of heat source [1–6]. In [7], the authors identified the unknown source of the Poisson equation using the modified regularization method. In [8], the authors identified the unknown source of the Poisson equation using the truncation method. In [7, 8], the regularization parameters which depend on the noise level and the a priori bound are selected by the a priori rule. Generally speaking, there is a defect for any a priori method; that is, the a priori choice of the regularization parameter depends seriously on the a priori bound of the unknown solution. However, in general, the a priori bound cannot be known exactly in practice, and working with a wrong constant may lead to the bad regularized solution. In the present paper, a posteriori choice of the regularization parameter will be given. To the authors’ knowledge, there are few papers for choosing the regularization parameter by the a posteriori rule for this problem. The truncation regularization methods have been studied for solving various types of inverse problems. Eldén et al. [9] used the truncation method to analyze and compute one-dimensional IHCP, Xiong et al. [10] used it to consider the surface heat flux for the sideways heat equation, Fu et al. [11] used it to solve the BHCP, Qian et al. [12] used it to consider the numerical differentiation, and Regińska and Regiński [13] applied the idea of truncation to a Cauchy problem for the Helmholtz

References

[1]  J. R. Cannon and P. Duchateau, “Structural identification of an unknown source term in a heat equation,” Inverse Problems, vol. 14, no. 3, pp. 535–551, 1998.
[2]  G. Li, “Data compatibility and conditional stability for an inverse source problem in the heat equation,” Applied Mathematics and Computation, vol. 173, no. 1, pp. 566–581, 2006.
[3]  Z. Yi and D. A. Murio, “Source term identification in 1-D IHCP,” Computers and Mathematics with Applications, vol. 47, no. 12, pp. 1921–1933, 2004.
[4]  L. Yan, F.-L. Yang, and C.-L. Fu, “A meshless method for solving an inverse spacewise-dependent heat source problem,” Journal of Computational Physics, vol. 228, no. 1, pp. 123–136, 2009.
[5]  A. Farcas and D. Lesnic, “The boundary-element method for the determination of a heat source dependent on one variable,” Journal of Engineering Mathematics, vol. 54, no. 4, pp. 375–388, 2006.
[6]  L. Yan, C.-L. Fu, and F.-L. Yang, “The method of fundamental solutions for the inverse heat source problem,” Engineering Analysis with Boundary Elements, vol. 32, no. 3, pp. 216–222, 2008.
[7]  F. Yang and C.-L. Fu, “The modified regularization method for identifying the unknown source on Poisson equation,” Applied Mathematical Modelling, vol. 36, no. 2, pp. 756–763, 2012.
[8]  F. Yang, “The truncation method for identifying an unknown source in the Poisson equation,” Applied Mathematics and Computation, vol. 217, no. 22, pp. 9334–9339, 2011.
[9]  L. Eldén, F. Berntsson, and T. Regińska, “Wavelet and Fourier methods for solving the sideways heat equation,” SIAM Journal on Scientific Computing, vol. 21, no. 6, pp. 2187–2205, 2000.
[10]  X.-T. Xiong, C.-L. Fu, and H.-F. Li, “Fourier regularization method of a sideways heat equation for determining surface heat flux,” Journal of Mathematical Analysis and Applications, vol. 317, no. 1, pp. 331–348, 2006.
[11]  C.-L. Fu, X.-T. Xiong, and Z. Qian, “Fourier regularization for a backward heat equation,” Journal of Mathematical Analysis and Applications, vol. 331, no. 1, pp. 472–480, 2007.
[12]  Z. Qian, C.-L. Fu, X.-T. Xiong, and T. Wei, “Fourier truncation method for high order numerical derivatives,” Applied Mathematics and Computation, vol. 181, no. 2, pp. 940–948, 2006.
[13]  T. Regińska and K. Regiński, “Approximate solution of a Cauchy problem for the Helmholtz equation,” Inverse Problems, vol. 22, pp. 975–989, 2006.
[14]  F. Yang and D. Li, “The fourier regularization method for identifying the unknown source on poisson equation,” International Journal of Mathematical Analysis, vol. 4, no. 25–28, pp. 1357–1361, 2010.
[15]  Z. Qian, C.-L. Fu, and Z.-P. Li, “Two regularization methods for a Cauchy problem for the Laplace equation,” Journal of Mathematical Analysis and Applications, vol. 338, no. 1, pp. 479–489, 2008.
[16]  A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer, New York, NY, USA, 1996.
[17]  H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic, Boston, Mass, USA, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133