全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Solutions of Nonlocal -Laplacian Equations

DOI: 10.1155/2013/364251

Full-Text   Cite this paper   Add to My Lib

Abstract:

In view of variational approach we discuss a nonlocal problem, that is, a Kirchhoff-type equation involving -Laplace operator. Establishing some suitable conditions, we prove the existence and multiplicity of solutions. 1. Introduction We study the existence and multiplicity of solutions of the nonlocal equation where ( ) is a smooth bounded domain, such that for any , and . The problem is related to the stationary version of a model, the so-called Kirchhoff equation, introduced by [1]. To be more precise, Kirchhoff established a model given by the equation where , , , , and are constants, which extends the classical D’Alambert’s wave equation, by considering the effects of the changes in the length of the strings during the vibrations. A distinguish feature of the Kirchhoff equation (1) is that the equation contains a nonlocal coefficient which depends on the average of the kinetic energy on , and hence the equation is no longer a pointwise identity. For Kirchhoff-type equations involving the -Laplacian operator, see, for example, [2–4]. The -Laplacian operator is a natural generalization of the -Laplacian operator where is a real constant. The main difference between them is that -Laplacian operator is homogenous, that is, for every , but the -Laplacian operator, when is not constant, is not homogeneous. This causes many problems; some classical theories and methods, such as the Lagrange multiplier theorem and the theory of Sobolev spaces, are not applicable. For -Laplacian operator, we refer the readers to [5–9] and references there in. Moreover, the nonlinear problems involving the -Laplacian operator are extremely attractive because they can be used to model dynamical phenomenons which arise from the study of electrorheological fluids or elastic mechanics. Problems with variable exponent growth conditions also appear in the modelling of stationary thermorheological viscous flows of non-Newtonian fluids and in the mathematical description of the processes of filtration of an ideal barotropic gas through a porous medium. The detailed application backgrounds of the -Laplacian can be found in [10–14] and the references therein. In the present paper, by considering the joint effects of different ( )-Laplace operator , we study the existence and multiplicity of solutions for a nonlocal problem, that is, problem via Mountain-Pass theorem and Fountain theorem. As far as we know, there is no paper that deals with a nonlocal problem involving ( )-Laplace operator except [15] in which the authors consider problem for the case and . Therefore, our paper deals

References

[1]  G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.
[2]  M. Avci, B. Cekic, and R. A. Mashiyev, “Existence and multiplicity of the solutions of the p(x)-Kirchhoff type equation via genus theory,” Mathematical Methods in the Applied Sciences, vol. 34, no. 14, pp. 1751–1759, 2011.
[3]  G. Dai and R. Hao, “Existence of solutions for a p(x)-Kirchho¤-type equation,” Journal of Mathematical Analysis and Applications, vol. 359, pp. 275–284, 2009.
[4]  X. Fan, “On nonlocal p(x)-Laplacian Dirichlet problems,” Nonlinear Analysis: Theory, Methods and Applications, vol. 72, no. 7-8, pp. 3314–3323, 2010.
[5]  M. Avci, “Existence and multiplicity of solutions for Dirichlet problems involving the p(x)-Laplace operator,” Electronic Journal of Differential Equations, vol. 2013, no. 14, pp. 1–9, 2013.
[6]  B. Cekic and R. A. Mashiyev, “Existence and localization results for p(x)-Laplacian via Topological Methods,” Fixed Point Theory and Applications, vol. 2010, Article ID 120646, 7 pages, 2010.
[7]  X.-L. Fan and Q.-H. Zhang, “Existence of solutions for p(x)-Laplacian Dirichlet problem,” Nonlinear Analysis: Theory, Methods and Applications, vol. 52, no. 8, pp. 1843–1852, 2003.
[8]  X. Fan, “Eigenvalues of the p(x)-Laplacian Neumann problems,” Nonlinear Analysis: Theory, Methods and Applications, vol. 67, no. 10, pp. 2982–2992, 2007.
[9]  M. Mihailescu and V. Radulescu, “On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent,” Proceedings of the American Mathematical Society, vol. 135, no. 9, pp. 2929–2937, 2007.
[10]  S. N. Antontsev and S. I. Shmarev, “A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions,” Nonlinear Analysis: Theory, Methods and Applications, vol. 60, no. 3, pp. 515–545, 2005.
[11]  S. N. Antontsev and J. F. Rodrigues, “On stationary thermo-rheological viscous flows,” Annali Dell' Università Di Ferrara, vol. 52, no. 1, pp. 19–36, 2006.
[12]  T. C. Halsey, “Electrorheological fluids,” Science, vol. 258, no. 5083, pp. 761–766, 1992.
[13]  M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, Berlin, Germany, 2000.
[14]  V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory,” Mathematics of the USSR-Izvestiya, vol. 9, pp. 33–66, 1987.
[15]  D. Liu, X. Wang, and J. Jinghua Yao, “On -Laplace equations,” http://arxiv.org/pdf/1205.1854.pdf.
[16]  M.-M. Boureanua, P. Pucci, and V. D. Rǎdulescu, “Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponenty,” Complex Variables and Elliptic Equations, vol. 56, no. 7–9, pp. 755–767, 2011.
[17]  X. Fan, J. Shen, and D. Zhao, “Sobolev embedding theorems for spaces Wk,p(x)(Ω),” Journal of Mathematical Analysis and Applications, vol. 262, no. 2, pp. 749–760, 2001.
[18]  X. L. Fan and D. Zhao, “On the spaces Lp(x) (Ω) and Wk,p(x) (Ω),” Journal of Mathematical Analysis and Applications, vol. 263, pp. 424–446, 2001.
[19]  O. Kovacik and J. Rakosnik, “On spaces Lp(x) and Wk,p(x),” Czechoslovak Mathematical Journal, vol. 41, no. 116, pp. 592–618, 1991.
[20]  K. C. Chang, Critical Point Theory and Applications, Shanghai Scientific and Technology Press, Shanghai, China, 1986.
[21]  M. Willem, Minimax Theorems, Birkhauser, Basel, Switzerland, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133