Polarization mode dispersion (PMD) field measurements on deployed buried fibres showed that the PMD variation over the 1520 to 1570 nm wavelength was stochastic. The PMD variation over the 98-hour period for each wavelength was directional and limited; they are due to the presence of random mode coupling along the fibre length and limited influence from extrinsic perturbations over time, respectively. PMD variation in the wavelength domain showed that the mean first-order PMD (FO-PMD) value is independent of whether the FO-PMD statistics of a fibre link approaches the Maxwellian theoretical distribution; the key factor is sufficient random mode coupling. The accompanying second-order PMD (SO-PMD) statistics, with FO-PMD statistics approaching Maxwellian, followed the PDF given by Foschini et al. (1999). The FO- and SO-PMD statistics at a given wavelength gave nonstochastic PMD distributions with time. 1. Introduction The polarization mode dispersion (PMD) in deployed fibres is known to evolve in a stochastic pattern due to unpredictable extrinsic perturbations (i.e., environmental changes, vibrations, and human interactions) with time and nonuniform intrinsic perturbations (i.e., core asymmetry and internal stress) experienced along the fibre length. The unpredictable variation of extrinsic and intrinsic perturbations with time and fibre length makes PMD statistics stochastic about some average value, either with wavelength or with time. This means that the PMD of optical systems with time and wavelength is unpredictable; therefore, one must resort to statistical analysis. The statistical property of PMD that attracted the initial interest was the mean first-order PMD (FO-PMD) [1, 2]. Thus, all PMD measurement techniques currently in use in the telecommunication industry require an averaging procedure in order to determine the overall PMD of a fibre link [2, 3]. Most, if not all, of thework done has been focused mainly on FO- and second-order PMD (SO-PMD) statistics, which is likely due to the FO- and SO-PMD vectors being known to be statistically dependent on each other [4, 5]. However, Phua and Haus [6] concluded that FO-PMD can be more accurately characterised than SO-PMD. Understanding the nature and characteristics of PMD is a key step towards the construction of effective PMD emulators and compensation techniques. The statistical characterisation of PMD includes the probability densities of FO- and SO-PMD, the scaling of the PMD phenomena with changes in the mean FO-PMD, various correlation functions, and characteristics associated with the
References
[1]
D. Andresciani, F. Curti, F. Matera, and B. Diano, “Measurement of the group-delay difference between the principal states of polarization on a low-birefringence terrestrial fiber cable,” Optics Letters, vol. 12, pp. 844–846, 1987.
[2]
J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4541–4550, 2000.
[3]
N. Gisin, B. Gisin, J. P. Von Der Weid, and R. Passy, “How accurately can one measure a statistical quantity like polarization-mode dispersion?” IEEE Photonics Technology Letters, vol. 8, no. 12, pp. 1671–1673, 1996.
[4]
J. N. Damask, Polarization Optics in Telecommunication, Springer, New York, NY, USA, 1st edition, 2005.
[5]
A. Galtarossa and C. R. Menyuk, Eds., Optical Fiber Communication Reports, Springer, New York, NY, USA, 2005.
[6]
P. B. Phua and H. A. Haus, “Variable second-order PMD module without first-order PMD,” Journal of Lightwave Technology, vol. 20, no. 11, pp. 1951–1956, 2002.
[7]
F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photonics Technology Letters, vol. 11, no. 4, pp. 451–453, 1999.
[8]
G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” Journal of Lightwave Technology, vol. 9, no. 11, pp. 1439–1456, 1991.
[9]
F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” Journal of Lightwave Technology, vol. 8, no. 8, pp. 1162–1166, 1990.
[10]
A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photonics Technology Letters, vol. 12, no. 3, pp. 296–298, 2000.
[11]
M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarization drift in installed fibers,” Journal of Lightwave Technology, vol. 18, no. 7, pp. 941–951, 2000.
[12]
C. De Angelis, A. Galtarossa, G. Gianello, F. Matera, and M. Schiano, “Time evolution of polarization mode dispersion in long terrestrial links,” Journal of Lightwave Technology, vol. 10, no. 5, pp. 552–555, 1992.
[13]
M. Brodsky, P. Magill, and N. J. Frigo, “Polarization-mode dispersion of installed recent vintage fiber as a parametric function of temperature,” IEEE Photonics Technology Letters, vol. 16, no. 1, pp. 209–211, 2004.
[14]
C. D. Poole, J. H. Winters, and J. A. Nagel, “Dynamical equation for polarization dispersion,” Optics Letters, vol. 16, pp. 372–374, 1991.
[15]
Y. Lizé, P. Lavoie, N. Godbout, S. Lacroix, R. Kashyap, and L. Palmer, “Novel first and second order polarization mode dispersion emulator,” in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC '05), pp. 563–565, March 2005, paper OThT1.
[16]
R. Khosravani Jr., I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Willner, and C. R. Menyuk, “Time and frequency domain characteristics of polarization-mode dispersion emulators,” IEEE Photonics Technology Letters, vol. 13, no. 2, pp. 127–129, 2001.
[17]
L. S. Yan, M. C. Hauers, C. Yeh et al., “High-speed, stable and repeatable PMD emulator with tunable statistics,” in Proceedings of the Optical Fiber Communications Conference (OFC '03), vol. 1, pp. 6–7, 2003, paper MF6.
[18]
J. P. Elbers, C. Glingener, M. Düser, and E. Voges, “Modelling of polarisation mode dispersion in singlemode fibres,” Electronics Letters, vol. 33, no. 22, pp. 1894–1895, 1997.
[19]
N. Gisin and J. P. Pellaux, “Polarization mode dispersion: time versus frequency domains,” Optics Communications, vol. 89, no. 2–4, pp. 316–323, 1992.
[20]
H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson, and P. A. Andrekson, “A comparison between different PMD compensation techniques,” Journal of Lightwave Technology, vol. 20, no. 3, pp. 368–378, 2002.
[21]
V. Musara, L. Wu, A. Leitch, S. Younsi, and M. Zghal, “Statistical characterization of first-order and second-order polarization mode dispersion in a deployed buried optical fibre cable,” in Proceedings of IEEE Africon, pp. 1–6, September 2009.
[22]
N. Gisin, R. Passy, J. C. Bishoff, and B. Perny, “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photonics Technology Letters, vol. 5, no. 7, pp. 819–821, 1993.
[23]
A. Galtarossa and L. Palmieri, “Relationship between pulse broadening due to polarisation mode dispersion and differential group delay in long singlemode fibres,” Electronics Letters, vol. 34, no. 5, pp. 492–493, 1998.
[24]
L. E. Nelson, R. M. Jopson, H. Kogelnik, and G. J. Foschini, “Measurement of depolarization and scaling associated with second-order polarization mode dispersion in optical fibers,” IEEE Photonics Technology Letters, vol. 11, no. 12, pp. 1614–1616, 1999.
[25]
V. Musara, L. Wu, G. Pelaelo, and A. W. R. Leitch, “Polarization mode dispersion emulation using polarization maintaining fibers: fixed root-mean-square differential group delay but varying second-order polarization mode dispersion,” Review of Scientific Instruments, vol. 80, no. 5, Article ID 053113, 5 pages, 2009.
[26]
G. J. Foschini, R. M. Jopson, L. E. Nelson, and H. Kogelnik, “Statistics of PMD-induced chromatic fiber dispersion,” Journal of Lightwave Technology, vol. 17, no. 9, pp. 1560–1565, 1999.
[27]
Z. Zalevsky and V. Eckhouse, “Polarization-mode dispersion manipulation using periodic polarization modulation,” Journal of Optics A, vol. 6, no. 9, pp. 862–868, 2004.
[28]
G. J. Foschini, L. E. Nelson, R. M. Jopson, and H. Kogelnik, “Probability densities of second-order polarization mode dispersion including polarization dependent chromatic fiber dispersion,” IEEE Photonics Technology Letters, vol. 12, no. 3, pp. 293–295, 2000.
[29]
E. Forestieri, “A fast and accurate method for evaluating joint second-order PMD statistics,” Journal of Lightwave Technology, vol. 21, no. 11, pp. 2942–2952, 2003.
[30]
G. J. Foschini, L. E. Nelson, R. M. Jopson, and H. Kogelnik, “Statistics of second-order PMD depolarization,” Journal of Lightwave Technology, vol. 19, no. 12, pp. 1882–1886, 2001.
[31]
D. Gupta, A. Kumar, and K. Thyagarajan, “Effect of second-order polarization mode dispersion on the performance of polarization mode dispersion emulators,” Optical Engineering, vol. 46, no. 8, Article ID 085006, 2007.
[32]
B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photonics Technology Letters, vol. 4, no. 9, pp. 1066–1069, 1992.
[33]
C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Electronics Letters, vol. 22, no. 19, pp. 1029–1030, 1986.
[34]
N. Cyr, “Polarization-mode dispersion measurement: generalization of the interferometric method to any coupling regime,” Journal of Lightwave Technology, vol. 22, no. 3, pp. 794–805, 2004.
[35]
C. D. Poole and J. Nagel, “Polarization effects in lightwave systems,” in Optical Fiber Telecommunications, I. P. Kaminow and T. Koch, Eds., Academic, San Diego, Calif, USA, 1997.
[36]
H. Kogelnik, P. J. Winzer, L. E. Nelson, R. M. Jopson, M. Boroditsky, and M. Brodsky, “First-order PMD outage for the hinge model,” IEEE Photonics Technology Letters, vol. 17, no. 6, pp. 1208–2499, 2005.