Concentrations of Cd, Co, Pb, and Zn in riverbed sediments from six sampling stations along the Sungai Kilim, Langkawi, Malaysia, were determined by using the Teflon Bomb Digestion. From this study, the concentrations of heavy metals in riverbed sediments were found ranging between 6.10 and 8.87?μg/g dry weight for Co, 0.03 and 0.45?μg/g dry weight for Cd, 59.8 and 74.9?μg/g dry weight for Zn, and 1.06 and 11.69?μg/g dry weight for Pb. From the observation, these areas were polluted by domestic waste, aquaculture, and tourism activities. For clarity, enrichment factor index was used to determine the level of sediment contamination in the study area. From this study, the average EF value is a bit high for Cd ( ) followed by Zn ( ), Pb ( ), and lastly, Co ( ). Based on the contamination categories, Cd was categorised as moderately enriched, while the rest of the metals studied were in deficient-to-minimally enriched by the anthropogenic sources. 1. Introduction Heavy metals are one of the most poisonous and serious groups of pollutants due to their high toxicity, abundance, and ease of accumulation from various plants and animals. It has been accepted that heavy metals can exist in the environment deriving from a variety of natural and anthropogenic sources. The phenomena of erosion, acidification, and weathering processes have brought input of these metals into the environment in a natural way. According to Idris [1], the natural occurrence of heavy metals in aquatic environments and their movement through the hydrocycle in addition to the inputs from anthropogenic activities reflect their ubiquity and complexity. Meanwhile, human activities also contribute to the existence of these metals such as industrial processes, agricultural and aquaculture activities, domestic wastes, and emission from vehicles [2]. Nowadays, these anthropogenic heavy metals contribute to the uppermost pollution to the aquatic environment, especially in the sediment. Sediment plays a major role in determining the pollution pattern of marine ecosystem [3]. According to Singh et al. [4] and Mwamburi [5], the sediments can act as both carriers and sinks for contaminants, reflecting the history of pollution while also providing a record of catchment inputs into the aquatic ecosystem. On the other hand, sediment can play a significant role as a scavenger agent for heavy metals, and an adsorptive sink in marine environment [6, 7]. Tsugonai and Yamada [8] further explained that aquatic sediment can act as scavengers of metals in the environment due to its several, sulfides, organic
References
[1]
A. M. Idris, “Combining multivariate analysis and geochemical approaches for assessing heavy metal level in sediments from Sudanese harbors along the Red Sea coast,” Microchemical Journal, vol. 90, no. 2, pp. 159–163, 2008.
[2]
A. Demirak, F. Yilmaz, A. Levent Tuna, and N. Ozdemir, “Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey,” Chemosphere, vol. 63, no. 9, pp. 1451–1458, 2006.
[3]
J. M. Casas, H. Rosas, M. Solé, and C. Lao, “Heavy metals and metalloids in sediments from the Llobregat basin, Spain,” Environmental Geology, vol. 44, no. 3, pp. 325–332, 2003.
[4]
K. P. Singh, D. Mohan, V. K. Singh, and A. Malik, “Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India,” Journal of Hydrology, vol. 312, no. 1–4, pp. 14–27, 2005.
[5]
J. Mwamburi, “Variations in trace elements in bottom sediments of major rivers in Lake Victoria's basin, Kenya,” Lakes and Reservoirs: Research and Management, vol. 8, no. 1, pp. 5–13, 2003.
[6]
A. Tessier and P. G. C. Campbell, “Partitioning of trace metals in sediments: relationships with bioavailability,” Hydrobiologia, vol. 149, no. 1, pp. 43–52, 1987.
[7]
N. W. Chan, “Protecting and conserving our natural heritage: potentials, threats and challenges of Langkawi Geopark,” in Proceedings of the International Conference World Civic Forum, Seoul, South Korea, May 2009.
[8]
S. Tsugonai and M. Yamada, “226Ra in Bering sea sediment and its application as a geochronometer,” Geochemical Journal, vol. 13, pp. 231–238, 1980.
[9]
B. Y. Kamaruzzaman, Geochemistry or the marine sediments. Its paleoceanographic significance [Ph.D. thesis], Hokkaido University, 1999.
[10]
T. Jamil, Physicochemical and sediment characteristics of the bottom sediment of Terengganu River, Terengganu Malaysia [M.S. thesis], Kolej Universiti Sains dan Teknologi Malaysia, 2006.
[11]
D. L. Trimm, H. H. Beiro, and S. J. Parker, “Comparison of digestion techniques in analyses for total metals in marine sediments,” Bulletin of Environmental Contamination and Toxicology, vol. 60, no. 3, pp. 425–432, 1998.
[12]
M. Chen and L. Q. Ma, “Comparison of three aqua regia digestion methods for twenty Florida soils,” Soil Science Society of America Journal, vol. 65, no. 2, pp. 491–499, 2001.
[13]
J. M. Deely and J. E. Fergusson, “Heavy metal and organic matter concentrations and distributions in dated sediments of a small estuary adjacent to a small urban area,” The Science of the Total Environment, vol. 153, no. 1-2, pp. 97–111, 1994.
[14]
L. F. Niencheski, H. L. Windom, and R. Smith, “Distribution of particulate trace metal in Patos Lagoon estuary (Brazil),” Marine Pollution Bulletin, vol. 28, no. 2, pp. 96–102, 1994.
[15]
K. D. Daskalakis and T. P. O'Connor, “Normalization and elemental sediment contamination in the coastal United States,” Environmental Science and Technology, vol. 29, no. 2, pp. 470–477, 1995.
[16]
V. T. Breslin and S. A. Sa?udo-Wilhelmy, “High spatial resolution sampling of metals in the sediment and water column in Port Jefferson Harbor, New York,” Estuaries, vol. 22, no. 3, pp. 669–680, 1999.
[17]
H. L. Windom, S. J. Schropp, F. D. Calder et al., “Natural trace metal concentrations in estuarine and coastal marine sediments of the Southeastern United States,” Environmental Science and Technology, vol. 23, no. 3, pp. 314–320, 1989.
[18]
S. Covelli and G. Fontolan, “Application of a normalization procedure in determining regional geochemical baselines,” Environmental Geology, vol. 30, no. 1-2, pp. 34–45, 1997.
[19]
V. Simeonov, D. L. Massart, G. Andreev, and S. Tsakovski, “Assessment of metal pollution based on multivariate statistical modeling of “hot spot” sediments from the Black Sea,” Chemosphere, vol. 41, no. 9, pp. 1411–1417, 2000.
[20]
L. Zhang, X. Ye, H. Feng et al., “Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China,” Marine Pollution Bulletin, vol. 54, no. 7, pp. 974–982, 2007.
[21]
R. S. Carmichael, CRC Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, Boca Raton, Fla, USA, 1989.
[22]
I. Bodek, W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt, Environmental Inorganic Chemistry, Pergamon Press, New York, NY, USA, 1988.
[23]
A. B. Ronov and A. A. Yaroshevsky, “Earth's crust geochemistry,” in Encyclopedia of Geochemistry and Environmental Sciences, R. W. Fairbridge, Ed., Van Nostrand, New York, NY, USA, 1969.
[24]
D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Fla, USA, 85th edition, 2005.
[25]
R. A. Sutherland, “Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii,” Environmental Geology, vol. 39, no. 6, pp. 611–627, 2000.
[26]
D. T. Rickard and J. O. Niagru, “Aqueous environmental chemistry of lead,” in The Biochemistry of Lead in the Environment: Part A. Ecological Cycles, pp. 219–284, Elsevier, Amsterdam, The Netherlands, 1978.
[27]
F. L. L. Muller, “Colloid/solution partitioning of metal-selective organic ligands, and its relevance to Cu, Pb and Cd cycling in the firth of Clyde,” Estuarine, Coastal and Shelf Science, vol. 46, no. 3, pp. 419–437, 1998.
[28]
M. A. Williamson, “Iron,” in Encyclopedia of Geochemistry, C. P. Marshall and R. W. Fairbridge, Eds., pp. 348–353, Kluwer Academic, Dordrecht, Germany, 1999.
[29]
S. Miko, M. Kuhta, and S. Kapelj, “Environmental baseline geochemistry of sediments and percolating waters in the Modric Cave, Croatia,” Acta Carsologica, vol. 31, no. 1, pp. 135–149, 2002.
[30]
A. P. Davis, M. Shokouhian, and S. Ni, “Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources,” Chemosphere, vol. 44, no. 5, pp. 997–1009, 2001.
[31]
N. Roney, V. Cassandra, M. Williams, M. Osier, and S. J. Paikoff, Toxicological Profile for Zinc, U.S. Department Of Health And Human Services Public Health Service Agency for Toxic Substances and Disease Registry, 2005.
[32]
NAS, “Inorganic solutes,” in Drinking Water and Health, vol. 1, pp. 205–229, National Academy of Sciences; National Academy Press, Washington, DC, USA, 1977.
[33]
F. Monaci and R. Bargagli, “Barium and other trace metals as indicators of vehicle emissions,” Water, Air, and Soil Pollution, vol. 100, no. 1-2, pp. 89–98, 1997.
[34]
O. M. Faroon, H. Abadin, S. Keith et al., Toxicological Profile for Cobalt, U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry, 2004.
[35]
S. J. Naylor, R. D. Moccia, and G. M. Durant, “The chemical composition of settleable solid fish waste (Manure) from commercial rainbow trout farms in Ontario, Canada,” North American Journal of Aquaculture, vol. 61, no. 1, pp. 21–26, 1999.
[36]
D. S. Lee, J. A. Garland, and A. A. Fox, “Atmospheric concentrations of trace elements in urban areas of the United Kingdom,” Atmospheric Environment, vol. 28, no. 16, pp. 2691–2713, 1994.
[37]
B. J. Alloway, Heavy Metals in Soils, Blackie Academic and Professional, Glasgow, UK, 2nd edition, 1995.
[38]
C. D. Dong, C. F. Chen, M. S. Ko, and C. W. Chen, “Enrichment, accumulation and ecological risk evaluation of cadmium in the surface sediments of Jen-Gen River Estuary, Taiwan,” International Journal of Chemical Engineering and Applications, vol. 3, no. 6, pp. 370–373, 2012.
[39]
C. W. Chen, C. F. Chen, and C. D. Dong, “Contamination and potential ecological risk of mercury in sediments of Kaohsiung River mouth, Taiwan,” International Journal of Environmental Science and Development, vol. 3, pp. 66–71, 2012.
[40]
Y. Kamaruzzaman and M. C. Ong, “Geochemical proxy of some chemical elements in sediments of kemaman river Estuary, Terengganu, Malaysia,” Sains Malaysiana, vol. 38, no. 5, pp. 631–636, 2009.
[41]
A. K. Ahmad, I. Mushrifah, and M. Shuhaimi-Othman, “Water quality and heavy metal concentrations in sediment of Sungai Kelantan, Kelantan, Malaysia: a baseline study,” Sains Malaysiana, vol. 38, no. 4, pp. 435–442, 2009.
[42]
B. Y. Kamaruzzaman, N. T. Shuhada, B. Akbar et al., “Spatial concentrations of lead and copper in bottom sediments of Langkawi Coastal Area, Malaysia,” Research Journal of Environmental Sciences, vol. 5, pp. 179–186, 2011.
[43]
B. G. Muhammad, N. A. S. Wan, and I. Mohd, “Sebaran logam berat dalam lembangan sungai semenyih,” in Proceedings of the Regional Symposium on Environment and Natural Resources, vol. 1, pp. 595–602, Kuala Lumpur, Malaysia, April 2002.
[44]
C. K. Yap and B. H. Pang, “Assessment of Cu, Pb, and Zn contamination in sediment of north western Peninsular Malaysia by using sediment quality values and different geochemical indices,” Environmental Monitoring and Assessment, vol. 183, no. 1–4, pp. 23–39, 2011.