This study investigated the occurrence of polycyclic aromatic hydrocarbons (PAHs) in water and sediment samples collected along the harbour line, Mumbai, India. The ∑PAHs quantified in water and sediment samples were ranged from 8.66?ng/L to 46.74?ng/L and from 2608?ng/g to 134134?ng/g dry wt., respectively. Significantly high concentration of ∑PAHs was found in water samples of Sewri and sediment samples of Mahul ( ). PAH concentrations detected in the present study were several folds higher than the existing sediment quality criteria suggested by various statutory agencies. The PAH composition patterns in water and sediments suggest the dominance of high molecular weight compounds and indicate important pyrolytic and petrogenic sources. The occurrence of PAHs in the marine environment has attracted the attention of the scientific community as these compounds are frequently detected in seawater and sediments at increasing levels and can have adverse health effects on marine organisms and humans. PAH concentrations detected at Sewri-Mahul site were sufficiently high to pose a risk to marine organisms if they are exposed continuously to this concentration. Hence, continuous monitoring of the ecosystem is highly warranted. 1. Introduction All over the world over there have been imminent problems of pollution in many of the coastal regions resulting in significant damage to marine ecosystems. Polycyclic aromatic hydrocarbons (PAHs) are a group of over 100 different chemicals that are formed during the incomplete burning of coal, oil and gas, garbage, and other organic substances [1, 2]. These contaminants generate considerable interest because some of them are highly carcinogenic in laboratory animals and have been implicated in breast, lung, and colon cancers in humans [3–5]. Accordingly, they are included in the US EPA and the EU priority pollutants list. PAHs can reach surface waters and sediment in different ways, including atmospheric deposition, urban run-off, municipal and industrial effluents, and oil spillage or leakage [6, 7]. Owing to their low aqueous solubility and strong hydrophobic nature, these contaminants tend to associate with particulate material in the aquatic environment, with the underlying sediments as their ultimate sink [8]. Recent efforts by the EPA have been aimed at establishing sediment quality criteria in an effort to further reduce human exposure to PAH, especially via ingestion of shellfish. Sediments may be a significant source of PAH to the overlying water column particularly in areas where historical PAH input to the
References
[1]
M. M. Mumtaz, J. D. George, K. W. Gold, W. Cibulas, and C. T. De Rosa, “ATSDR evaluation of health effects of chemicals. IV. Polycyclic aromatic hydrocarbons (PAHs): understanding a complex problem,” Toxicology and Industrial Health, vol. 12, no. 6, pp. 742–971, 1996.
[2]
T. E. McGrath, J. B. Wooten, C. W. Geoffrey, and M. R. Hajaligol, “Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation,” Food and Chemical Toxicology, vol. 45, no. 6, pp. 1039–1050, 2007.
[3]
M. Pufulete, J. Battershill, A. Boobis, and R. Fielder, “Approaches to carcinogenic risk assessment for polycyclic aromatic hydrocarbons: a UK perspective,” Regulatory Toxicology and Pharmacology, vol. 40, no. 1, pp. 54–66, 2004.
[4]
A. Ramesh, S. A. Walker, D. B. Hood, M. D. Guillén, K. Schneider, and E. H. Weyand, “Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons,” International Journal of Toxicology, vol. 23, no. 5, pp. 301–333, 2004.
[5]
K. B. Okona-Mensah, J. Battershill, A. Boobis, and R. Fielder, “An approach to investigating the importance of high potency polycyclic aromatic hydrocarbons (PAHs) in the induction of lung cancer by air pollution,” Food and Chemical Toxicology, vol. 43, no. 7, pp. 1103–1116, 2005.
[6]
A. Gogou, I. Bouloubassi, and E. G. Stephanou, “Marine organic geochemistry of the Eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments,” Marine Chemistry, vol. 68, no. 4, pp. 265–282, 2000.
[7]
S. G. Wakeham, “Aliphatic and polycyclic aromatic hydrocarbons in Black Sea sediments,” Marine Chemistry, vol. 53, no. 3-4, pp. 187–205, 1996.
[8]
P. F. Landrum and J. A. Robbins, “Bioavailability of sediment associated contaminants to benthic invertebrates,” in Sediments: Chemistry and Toxicity on in-Place Pollutants, R. Baudo, J. P. Giesy, and H. Muntau, Eds., pp. 237–263, Lewis Publishers, 1990.
[9]
K. E. Gustafson and R. M. Dickhut, “Distribution of polycyclic aromatic hydrocarbons in Southern Chesapeake Bay surface water: evaluation of three methods for determining freely dissolved water concentrations,” Environmental Toxicology and Chemistry, vol. 16, pp. 452–461, 1997.
[10]
K. A. Maruya, R. W. Risebrough, and A. J. Horne, “Partitioning of polynuclear aromatic hydrocarbons between sediments from San Francisco Bay and their porewaters,” Environmental Science and Technology, vol. 30, no. 10, pp. 2942–2947, 1996.
[11]
S. Tanabe, M. S. Prudente, S. Kan-Atireklap, and A. Subramanian, “Mussel watch: marine pollution monitoring of butyltins and organochlorines in coastal waters of Thailand, Philippines and India,” Ocean and Coastal Management, vol. 43, no. 8-9, pp. 819–839, 2000.
[12]
M. D. Zingde and K. Govindan, “Health status of coastal waters of Mumbai and regions around,” in Environmental Problems of Coastal Areas in India, V. K. Sharma, Ed., pp. 119–132, Book Well Publishers, New Delhi, India, 2000.
[13]
M. D. Zingde, Indian National Science Academy, New Delhi, 1999.
[14]
M. Z. Islam and A. R. Rahmani, Indian Bird Conservation Network, Bombay Natural History Society and Bird life International (UK), 2004.
[15]
C. Maldonado, J. M. Bayona, and L. Bodineau, “Sources, distribution, and water column processes of aliphatic and polycyclic aromatic hydrocarbons in the northwestern Black Sea water,” Environmental Science and Technology, vol. 33, no. 16, pp. 2693–2702, 1999.
[16]
J. L. Zhou, H. Hong, Z. Zhang, K. Maskaoui, and W. Chen, “Multi-phase distribution of organic micropollutants in Xiamen Harbour, China,” Water Research, vol. 34, no. 7, pp. 2132–2150, 2000.
[17]
A. El Nemr and A. M. A. Abd-Allah, “Contamination of polycyclic aromatic hydrocarbons (PAHs) in microlayer and subsurface waters along Alexandria coast, Egypt,” Chemosphere, vol. 52, no. 10, pp. 1711–1716, 2003.
[18]
J. L. Zhou and K. Maskaoui, “Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China,” Environmental Pollution, vol. 121, no. 2, pp. 269–281, 2003.
[19]
J. J. González, L. Vi?as, M. A. Franco et al., “Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill,” Marine Pollution Bulletin, vol. 53, no. 5-7, pp. 250–259, 2006.
[20]
A. Valavanidis, T. Vlachogianni, S. Triantafillaki, M. Dassenakis, F. Androutsos, and M. Scoullos, “Polycyclic aromatic hydrocarbons in surface seawater and in indigenous mussels (Mytilus galloprovincialis) from coastal areas of the Saronikos Gulf (Greece),” Estuarine, Coastal and Shelf Science, vol. 79, no. 4, pp. 733–739, 2008.
[21]
A. M. Stortini, T. Martellini, M. Del Bubba, L. Lepri, G. Capodaglio, and A. Cincinelli, “n-Alkanes, PAHs and surfactants in the sea surface microlayer and sea water samples of the Gerlache Inlet sea (Antarctica),” Microchemical Journal, vol. 92, no. 1, pp. 37–43, 2009.
[22]
Y. W. Qiu, G. Zhang, G. Q. Liu, L. L. Guo, X. D. Li, and O. Wai, “Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China,” Estuarine, Coastal and Shelf Science, vol. 83, no. 1, pp. 60–66, 2009.
[23]
Y. L. Wu, X. H. Wang, Y. Y. Li, and H. S. Hong, “Occurrence of polycyclic aromatic hydrocarbons (PAHs) in seawater from the Western Taiwan Strait, China,” Marine Pollution Bulletin, vol. 63, no. 5–12, pp. 459–463, 2011.
[24]
H. Hong, L. Xu, L. Zhang, J. C. Chen, Y. S. Wong, and T. S. M. Wan, “Environmental fate and chemistry of organic pollutants in the sediment of Xiamen and Victoria harbours,” Marine Pollution Bulletin, vol. 31, no. 4–12, pp. 229–236, 1995.
[25]
C. D. Simpson, A. A. Mosi, W. R. Cullen, and K. J. Reimer, “Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada,” Science of the Total Environment, vol. 181, no. 3, pp. 265–278, 1996.
[26]
P. Baumard, H. Budzinski, P. Garrigues, H. Dizer, and P. D. Hansen, “Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations,” Marine Environmental Research, vol. 47, no. 1, pp. 17–47, 1999.
[27]
J. S. Khim, K. Kannan, D. L. Villeneuve, C. H. Koh, and J. P. Giesy, “Characterization and distribution of trace organic contaminants in sediment from Masan Bay, Korea. 1. Instrumental analysis,” Environmental Science and Technology, vol. 33, no. 23, pp. 4199–4205, 1999.
[28]
I. Bouloubassi, J. Fillaux, and A. Saliot, “Hydrocarbons in surface sediments from there Changjiang (Yangtze River) Estuary, East China Sea,” Marine Pollution Bulletin, vol. 42, no. 12, pp. 1335–1346, 2001.
[29]
M. Ma, Z. Feng, C. Guan, Y. Ma, H. Xu, and H. Li, “DDT, PAH and PCB in sediments from the intertidal zone of the Bohai Sea and the Yellow Sea,” Marine Pollution Bulletin, vol. 42, no. 2, pp. 132–136, 2001.
[30]
M. Notar, L. S. Hermina, and F. Jadran, “Composition, distribution and sources of polycyclic aromatic hydrocarbons in sediments of the Gulf of Trieste, Northern Adriatic Sea,” Marine Pollution Bulletin, vol. 42, no. 1, pp. 36–44, 2001.
[31]
S. Boitsov, H. K. B. Jensen, and J. Klungs?yr, “Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea,” Marine Environmental Research, vol. 68, no. 5, pp. 236–245, 2009.
[32]
I. Tolosa, M. Mesa-Albernas, and C. M. Alonso-Hernandez, “Inputs and sources of hydrocarbons in sediments from Cienfuegos bay, Cuba,” Marine Pollution Bulletin, vol. 58, no. 11, pp. 1624–1634, 2009.
[33]
R. J. Law, V. J. Dawes, R. J. Woodhead, and P. Matthiessen, “Polycyclic aromatic hydrocarbons (PAH) in seawater around England and Wales,” Marine Pollution Bulletin, vol. 34, no. 5, pp. 306–322, 1997.
[34]
S. E. J?rgensen, S. N. Nielsen, and L. A. J?rgensen, Handbook of Ecological Parameters and Ecotoxicology., Elsevier, Amsterdam, The Netherlands, 1991.
[35]
M. G. Barron, T. Podrabsky, S. Ogle, and R. W. Ricker, “Are aromatic hydrocarbons the primary determinant of petroleum toxicity to aquatic organisms?” Aquatic Toxicology, vol. 46, no. 3-4, pp. 253–268, 1999.
[36]
W. E. Pereira, F. D. Hostettler, and J. B. Rapp, “Distributions and fate of chlorinated pesticides, biomarkers and polycyclic aromatic hydrocarbons in sediments along a contamination gradient from a point-source in San Francisco Bay, California,” Marine Environmental Research, vol. 41, no. 3, pp. 299–314, 1996.
[37]
R. P. Eganhouse, B. R. T. Simoneit, and I. R. Kaplan, “Extractable organic matter in urban stormwater runoff. 2. Molecular characterization,” Environmental Science and Technology, vol. 15, no. 3, pp. 315–326, 1981.
[38]
E. J. Hoffman, G. L. Mills, J. S. Latimer, and J. G. Quinn, “Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters,” Environmental Science and Technology, vol. 18, no. 8, pp. 580–587, 1984.
[39]
V. Dhananjayan and S. Muralidharan, “Polycyclic aromatic hydrocarbons in various species of fishes from mumbai harbour, India, and their dietary intake concentration to human,” International Journal of Oceanography, vol. 2012, Article ID 645178, 6 pages, 2012.
[40]
G. B. Kim, K. A. Maruya, R. F. Lee, J. H. Lee, C. H. Koh, and S. Tanabe, “Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea,” Marine Pollution Bulletin, vol. 38, no. 1, pp. 7–15, 1999.
[41]
E. R. Long, D. D. Macdonald, S. L. Smith, and F. D. Calder, “Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments,” Environmental Management, vol. 19, no. 1, pp. 81–97, 1995.