全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spatiotemporal Spectral Variations of AOT in India’s EEZ over Arabian Sea: Validation of OCM-II

DOI: 10.1155/2012/473162

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report the results of sun-photometric measurements of Aerosol Optical Thickness (AOT) in India’s Exclusive Economic Zone (EEZ) over the Arabian Sea along with synchronous Ocean Color Monitor (OCM-II) derived AOT estimates during December 12, 2009–January 10, 2010. Relatively higher values of Angstrom exponent (α) around 1.2 near coast and 0.2–0.8 in the India’s EEZ, observed during the cruise period, indicate the presence of smaller particles near the coast due to anthropogenic activities; and larger particles in the India’s EEZ due to advection of pollutants from Indian subcontinent via long-range transport. Results related to α and its derivative reveal four different aerosol types (urban-industrial, desert-dust, clean-marine, and mixed-type) with varying fraction during the study period. Surface radiative forcing due to aerosols is found to be 20 W/m2 over India’s EEZ. OCM-derived AOTs showed good corroboration with in situ measurements with a correlation coefficient of about 0.95. A reasonably good correlation was also observed between AOT and wind speed (R = 0.6); AOT and relative humidity (R = 0.58). The concurrent MODIS AOT data also agree well with those observed by the OCEANSAT (OCM-II) satellite during the campaign period. 1. Introduction Although aerosols are minute particles, their cumulative radiative effect (both direct and indirect) on the atmosphere is tremendous [1]. They can scatter away and absorb the incident solar radiation leading to cooling of the earth’s surface and simultaneous warming of the lower atmosphere up to about 6?km [2, 3]. Aerosols also pollute the atmosphere and reduce visibility [4]. Continental aerosols are mainly wind-blown mineral dust and carbonaceous and sulphate particles produced by forest fires, land-use, and industrial activities, while marine aerosols are mainly sea-salt particles are produced by wave-breaking, and sulphate particles produced by the oxidation of Dimethyl Sulphide (DMS), released by the phytoplankton [5]. As the oceans cover more than 70% of the earth’s surface, they are one of the largest sources of natural aerosols. Being hygroscopic, marine aerosols are crucial in cloud formation in the marine boundary layer and are also important in the radiative coupling between the ocean and the atmosphere. While continental aerosols can be both scattering and absorbing, marine aerosols are mostly of scattering type [6], thus becoming a decisive factor in the albedo of the earth [7–10]. Aerosols are poorly characterized in climate models due to the lack of global information on their

References

[1]  IPCC, “Report to IPCC from Scientific Assessment Group (WGI,” in Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, 1995.
[2]  J. A. Coakley, R. D. Cess, and F. B. Yurevich, “The effect of tropospheric aerosols on the earth's radiation budget: a parameterization for climate models,” Journal of the Atmospheric Sciences, vol. 40, no. 1, pp. 116–138, 1983.
[3]  Y. J. Kaufman, D. Tanré, H. R. Gordon et al., “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” Journal of Geophysical Research D, vol. 102, no. 14, pp. 16815–16830, 1997.
[4]  I. Das and M. Mohan, “Detection of marine aerosols using ocean colour sensors,” Mausam, vol. 54, pp. 327–334, 2003.
[5]  R. J. Charlson, S. E. Schwartz, J. M. Hales et al., “Climate forcing by anthropogenic aerosols,” Science, vol. 255, no. 5043, pp. 423–430, 1992.
[6]  O. Dubovik, B. Holben, T. F. Eck et al., “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” Journal of the Atmospheric Sciences, vol. 59, no. 3, pp. 590–608, 2002.
[7]  C. Tomasi, V. Vitale, A. Lupi, A. Cacciari, S. Marani, and U. Bonafé, “Marine and continental aerosol effects on the upwelling solar radiation flux in Southern Portugal during the ACE-2 experiment,” Annals of Geophysics, vol. 46, no. 2, pp. 467–479, 2003.
[8]  Intergovernmental Panel on Climate Change (IPCC), “Summary for policy makers,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning et al., Eds., Cambridge University Press, Cambridge, UK, 2007.
[9]  M. Rinaldi, S. Decesari, E. Finessi, et al., “Primary and secondary organic marine aerosol and oceanic biological activity: recent results and new perspectives for future studies,” Advances in Meteorology, vol. 2010, Article ID 310682, 10 pages, 2010.
[10]  X. Liu, R. C. Easter, S. J. Ghan, et al., “Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5,” Geoscientific Model Development, vol. 5, pp. 709–739, 2012.
[11]  G. W. Mann, K. S. Carslaw, D. A. Ridley, et al., “Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model,” Atmospheric Chemistry and Physics, vol. 12, pp. 4449–4476, 2012.
[12]  P. C. S. Devara, S. K. Saha, P. E. Raj et al., “A four-year climatology of total column tropical urban aerosol, ozone and water vapour distributions over Pune, India,” Journal of Aerosol and Air Quality Research, vol. 5, pp. 103–114, 2005.
[13]  P. C. S. Devara, R. S. Maheskumar, P. E. Raj, K. K. Dani, and S. M. Sonbawne, “Some features of columnar aerosol optical depth, ozone and precipitable water content observed over land during the INDOEX-IFP99,” Meteorologische Zeitschrift, vol. 10, no. 2, pp. 123–130, 2001.
[14]  M. Morys, F. M. Mims, S. Hagerup et al., “Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer,” Journal of Geophysical Research D, vol. 106, no. 13, pp. 14573–14582, 2001.
[15]  C. Ichoku, R. Levy, Y. J. Kaufman et al., “Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor,” Journal of Geophysical Research D, vol. 107, article 4179, 17 pages, 2002.
[16]  K. S. Behera, Ed., Maritime Heritage of India, Aryan Books International, 1999.
[17]  J. N. Porter, M. Miller, C. Pietras, and C. Motell, “Ship-based sun photometer measurements using microtops sun photometers,” Journal of Atmospheric and Oceanic Technology, vol. 18, no. 5, pp. 765–774, 2001.
[18]  K. D. Knobelspiesse, C. Pietras, and G. S. Fargion, “Sunpointing-error correction for sea deployment of the MICROTOPS II handheld sun photometer,” Journal of Atmospheric and Oceanic Technology, vol. 20, pp. 767–771, 2003.
[19]  A. Smirnov, B. N. Holben, I. Slutsker et al., “Maritime aerosol network as a component of aerosol robotic network,” Journal of Geophysical Research D, vol. 114, no. 6, Article ID D06204, 10 pages, 2009.
[20]  N. T. O'Neill, A. Ignatov, B. N. Holben, and T. F. Eck, “The lognormal distribution as a reference for reporting aerosol optical depth statistics; empirical tests using multi-year, multi-site AERONET sunphotometer data,” Geophysical Research Letters, vol. 27, no. 20, pp. 3333–3336, 2000.
[21]  P. Chauhan, N. Sanwlani, and R. R. Navalgund, “Aerosol optical depth variability in the northeastern Arabian sea during winter monsoon: a study using in-situ and satellite measurements,” Indian Journal of Marine Sciences, vol. 38, no. 4, pp. 390–396, 2009.
[22]  M. C. R. Kalapureddy and P. C. S. Devara, “Pre-monsoon aerosol optical properties and spatial distribution over the Arabian Sea during 2006,” Journal of Atmospheric Research, vol. 95, no. 2-3, pp. 186–196, 2010.
[23]  T. F. Eck, B. N. Holben, J. S. Reid et al., “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” Journal of Geophysical Research D, vol. 104, no. 24, pp. 31333–31349, 1999.
[24]  A. Jayaraman, D. Lubin, S. Ramachandran et al., “Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise,” Journal of Geophysical Research D, vol. 103, no. 12, pp. 13827–13836, 1998.
[25]  B. N. Holben, D. Tanré, A. Smirnov et al., “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” Journal of Geophysical Research D, vol. 106, no. 11, pp. 12067–12097, 2001.
[26]  V. E. Cachorro, R. Vergaz, and A. M. De Frutos, “A quantitative comparison of α-? turbidity parameter retrieved in different spectral ranges based on spectroradiometer solar radiation measurements,” Atmospheric Environment, vol. 35, no. 30, pp. 5117–5124, 2001.
[27]  G. Pace, A. di Sarra, D. Meloni, S. Piacentino, and P. Chamard, “Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types,” Atmospheric Chemistry and Physics, vol. 6, no. 3, pp. 697–713, 2006.
[28]  D. G. Kaskaoutis, H. D. Kambezidis, N. Hatzianastassiou, P. G. Kosmopoulos, and K. V. S. Badarinath, “Aerosol climatology: on the discrimination of aerosol types over four AERONET sites,” Atmospheric Chemistry and Physics Discussions, vol. 7, no. 3, pp. 6357–6411, 2007.
[29]  T. F. Eck, B. N. Holben, O. Dubovik et al., “Column-integrated aerosol optical properties over the Maldives during the northeast monsoon for 1998–2000,” Journal of Geophysical Research D, vol. 106, no. 22, pp. 28555–28566, 2001.
[30]  T. F. Eck, B. N. Holben, D. E. Ward et al., “Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign,” Journal of Geophysical Research D, vol. 106, no. 4, pp. 3425–3448, 2001.
[31]  M. Masmoudi, M. Chaabane, D. Tanré, P. Gouloup, L. Blarel, and F. Elleuch, “Spatial and temporal variability of aerosol: size distribution and optical properties,” Journal of Atmospheric Research, vol. 66, no. 1-2, pp. 1–19, 2003.
[32]  D. H. Kim, B. J. Sohn, T. Nakajima et al., “Aerosol optical properties over east Asia determined from ground-based sky radiation measurements,” Journal of Geophysical Research D, vol. 109, no. 2, Article ID D02209, 18 pages, 2004.
[33]  K. O. Ogunjobi, Z. He, K. W. Kim, and Y. J. Kim, “Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea,” Atmospheric Environment, vol. 38, no. 9, pp. 1313–1323, 2004.
[34]  M. C. R. Kalapureddy, D. G. Kaskaoutis, P. E. Raj et al., “Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB),” Journal of Geophysical Research D, vol. 114, no. 17203, Article ID D17203, 12 pages, 2009.
[35]  S. K. Satheesh, V. Ramanathan, X. Li-Jones et al., “A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data,” Journal of Geophysical Research D, vol. 104, no. 22, pp. 27421–27440, 1999.
[36]  K. K. Moorthy, A. Saha, B. S. N. Prasad, K. Niranjan, D. Jhurry, and P. S. Pillai, “Aerosol optical depths over peninsular India and adjoining oceans during the INDOEX campaigns: spatial, temporal, and spectral characteristics,” Journal of Geophysical Research D, vol. 106, no. 22, pp. 28539–28554, 2001.
[37]  V. Ramanathan, P. J. Crutzen, J. Lelieveld et al., “Indian Ocean Experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze,” Journal of Geophysical Research D, vol. 106, no. 22, pp. 28371–28398, 2001.
[38]  S. S. Babu, V. S. Nair, and K. K. Moorthy, “Seasonal changes in aerosol characteristics over Arabian Sea and their consequence on aerosol short-wave radiative forcing: results from ARMEX field campaign,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 70, no. 5, pp. 820–834, 2008.
[39]  A. Smirnov, B. N. Holben, O. Dubovik et al., “Atmospheric aerosol optical properties in the Persian Gulf,” Journal of the Atmospheric Sciences, vol. 59, no. 3, pp. 620–634, 2002.
[40]  K. O. Ogunjobi, Z. He, and C. Simmer, “Spectral aerosol optical properties from AERONET Sun-photometric measurements over West Africa,” Journal of Atmospheric Research, vol. 88, no. 2, pp. 89–107, 2008.
[41]  I. N. Sokolik, O. B. Toon, and R. W. Bergstrom, “Modeling the rediative characteristics of airborne mineral aerosols at infrared wavelengths,” Journal of Geophysical Research D, vol. 103, no. 8, pp. 8813–8826, 1998.
[42]  K. K. Moorthy, S. K. Satheesh, S. S. Babu, and C. B. S. Dutt, “Integrated Campaign for aerosols gases and Radiation Budget (ICARB): an overview,” Journal of Earth System Science, vol. 117, no. 1, pp. 243–262, 2008.
[43]  J.-F. Léon, P. Chazette, J. Pelon, F. Dulac, and H. Randriamiarisoa, “Aerosol direct radiative impact over the INDOEX area based on passive and active remote sensing,” Journal of Geophysical Research D, vol. 107, no. 19, article 8006, 2002.
[44]  E. J. Welton, K. J. Voss, P. K. Quinn et al., “Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,” Journal of Geophysical Research D, vol. 107, no. 19, article 8019, 2002.
[45]  B. Jha and T. N. Krishnamurthi, “Real-time meteorological reanalysis atlas during pre-INDOEX field phase—1998,” Rep. 98-08, INDOEX Publ 20, Tallahassee, Department of Meteorology, Florida State University, 1998.
[46]  K. Rajeev, V. Ramanathan, and J. Meywerk, “Regional aerosol distribution and its long-range transport over the Indian Ocean,” Journal of Geophysical Research D, vol. 105, no. 2, pp. 2029–2043, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133