The assessment of nuclear objects sites in Lithuania, including groundwater characterization, took place in the last few years. Tritium activity in groundwater is a very useful tool for determining how groundwater systems function. Natural and artificial tritium was measured in 8 wells in different layers (from 1.5 to 15 meters depth). The results were compared with other regions of Lithuania also. The evaluated tritium activities varied from 1.8 to 6.4?Bq/L at nuclear objects sites in Lithuania and they are coming to background level (1.83?Bq/L) and other places in Lithuania. The data show, that groundwater at the nuclear power objects sites is not contaminated with artificial tritium. In this work, the vertical tritium transfer from soil water to the groundwater well at nuclear objects site was estimated. The data show that the main factor for vertical tritium transfer to the well depends on the depth of wells. 1. Introduction Lithuania is planning to construct a new nuclear power plant (NPP) nearby the closed one. Lithuanian’s obligation to shut down old one was one of the requirements included in the European Union Accession Treaty. Unit 1 of closed NPP was shut down on December 31, 2004, and unit 2 on December 31, 2009. A near surface repository for low and intermediate-level short-lived radioactive waste will be built on the Stabatiskes site in the vicinity of Ignalina NPP during decommissioning works. The disposal capacity can also be used for the waste stored in the temporary repositories of the Ignalina NPP. Engineering barriers are used in the repository for radioactive waste; however, in long-term evolution scenario radionuclides can spread into the environment, extend in the biosphere, and cause (define) the external exposure of the environment due to the natural and premature (prescheduled) degradation of the engineering barriers of the repository [1]. The decommissioning waste, the new NPP sites, and the closed NPP site are located in the north-eastern part of Lithuania on the shore of Lake Druksiai, close to the borders of Latvia and Belarus (Figure 1). Figure 1: The locations of the observation objects sites are Ignalina NPP; Visaginas NPP; Stabatiske; Budiniai; Zarasai; Birzai; Nida. Groundwater characterization is an important issue in the setting process of new NPP and decommissioning of the old NPP’s. Groundwater dating is a very useful tool for determining how groundwater systems function [2, 3]. The radionuclides transport in water systems depends on many factors: the physicochemical condition, pH, salinity, hydrological,
References
[1]
J. Alioncik, I. Bataitiene, and D. Butkus, “Radionuclide distribution in the soil on the stabatishkes site in the vicinity of the ignalina NPP,” Science—Future/Mokslas—Lietuvos Ateitis, vol. 2, no. 5, pp. 9–16, 2010.
[2]
I. M. Mufid al-hadithi, D. C. Singhal, B. Kumar, M. S. Rao, and S. K. Verma, “Groundwater resources evaluation in the Piedmont zone of Himalaya, India, using Isotope and GIS techniques,” Journal of Spatial Hydrology, vol. 6, no. 1, pp. 105–119, 2006.
[3]
F. J. Pearson and B. B. Hanshaw, “Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating,” in Isotope Hydrology, IAEA, 1970.
[4]
D. Galeriu, R. Heling, and A. Melintescu, “The dynamics of tritium- including OBT- in the aquatic food chain,” Fusion Science and Technology, vol. 48, no. 1, pp. 779–782, 2005.
[5]
L. L. Lucas and M. P. Unterweger, “Comprehensive review and critical evaluation of the half-life of tritium,” Journal of Research of the National Institute of Standards and Technology, vol. 105, no. 4, pp. 541–549, 2000.
[6]
A. Onugba and H. O. Aboh, “The tritium content of precipitation and groundwater at Yola, Nigeria,” Science World Journal, vol. 4, no. 2, pp. 23–28, 2009.
[7]
D. G. Jacobs, “Sources of tritium and its behaviour upon release to the environment,” AEC Critical Review Series TID-24635, 1968.
[8]
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), “Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation,” Report to the General Assembly, with Annexes, in United Nations Sales Publication E.77.IX.I, New York, NY, USA, 1977.
[9]
A. T. Wilson and G. J. Ferguson, “Origin of terrestrial tritium,” Geochim Cosmochim Acta, vol. 18, no. 3-4, pp. 273–277, 1960.
[10]
A. Zahn, V. Barth, K. Pfeilsticker, and U. Platt, “Deuterium, Oxygen-18, and Tritium as tracers for water vapour transport in the lower stratosphere and tropopause region,” Journal of Atmospheric Chemistry, vol. 30, no. 1, pp. 25–47, 1998.
[11]
N. Baran, J. Richert, and C. Mouvet, “Field data and modelling of water and nitrate movement through deep unsaturated loess,” Journal of Hydrology, vol. 345, no. 1-2, pp. 27–37, 2007.
[12]
D. Hart, “Derived Release Limits Guidance CANDU Owners Group Inc,” Tech. Rep. COG-06-3090-R2-I, 2008.
[13]
R. D. Mutch Jr. and J. D. Mahony, “A study of tritium in municipal solid waste leachate and gas,” Fusion Science and Technology, vol. 54, no. 1, pp. 305–310, 2008.
[14]
K. Miyamoto, K.-I. Kimura, and S. Hongo, “Transfer model of tritium in a local hydrosphere,” Fusion Technology, vol. 28, no. 3, pp. 910–917, 1995.
[15]
R. Lin and K. Wei, “Tritium profiles of pore water in the Chinese loess unsaturated zone: implications for estimation of groundwater recharge,” Journal of Hydrology, vol. 328, no. 1-2, pp. 192–199, 2006.
[16]
V. Jakimaviciute-Maseliene, J. Mazeika, and D. Baltrunas, “Safety assessment of the low and intermediate level radioactive waste near-surface repository for Stabatiske site (Lithuania),” Lithuanian Journal of Physics, vol. 47, no. 4, pp. 503–512, 2007.
[17]
J. Mazeika, Radionuclides in Geoenvironment of Lithuania, Vilnius, Lithuania, 2002.
[18]
Lithuanian Hygiene Norm HN 24:2003, Requirements For Safety and Quality of Drinking Water, 2003.
[19]
Water flow analysis and radionuclide migration in near-surface repository, Scientific Report, Institute of Geography and Geology, Vilnius, Lithuania, 2006.
[20]
Hydrogeological description and analysis report, version 2, Issue 1, Nature Research Centre, Vilnius, Lithuania, 2012.