The efficacy and safety of icodextrin has been well established. In this paper, we will discuss the pharmacokinetics and biocompatibility of icodextrin and its clinical effect on fluid management in peritoneal dialysis patients. Novel strategies for its prescription for peritoneal dialysis patients with inadequate ultrafiltration are reviewed. 1. Introduction The use of icodextrin (ico) has been characterized as one of the major achievements in peritoneal dialysis (PD) [1]. Ico-based peritoneal dialysis solutions have been used successfully by PD practitioners for two decades. Ico is an isoosmolar alternative osmotic agent that induces ultrafiltration (UF) in peritoneal dialysis by colloid osmosis. Peritoneal absorption of ico is limited and occurs by convection via the lymphatics of the peritoneum [2]. As a result, the net pressure gradient is relatively constant, sustaining UF for the long dwell. Many clinical benefits of ico have been described, such as a reduction in total glucose load [3], equivalent or higher UF than that provided by hypertonic glucose solutions [4], and better control of fluid balance [5]. Ico is recommended for patients with poor UF and those with a high or high/high-average pattern in the peritoneal equilibrium test (PET). It is well known that UF volume correlates with patient and technique survival [6]. Glucose degradation products (GDPs) and the products of advanced glycosylation end products (AGEs) induce inflammation and fibrosis of the peritoneal membrane [7]. Minimizing dextrose exposure by using ico for the long dwell may prevent long-term detrimental changes of the peritoneal membrane. In addition, there is a growing concern about the total amount of absorbed glucose and so there is interest in the use of new alternative glucose-sparing osmotic agents. The use of a “bimodal” solution composed of glucose and ico, in order to increase sodium and fluid removal, is a promising approach [8]. Ico was used initially during the long night dwell in continuous ambulatory peritoneal dialysis (CAPD) and during the day dwell in continuous cyclic peritoneal dialysis (CCPD). Recently, the daily use of two ico exchanges has been suggested in order to minimize the glucose load and/or to increase the UF rate [9–12]. The biocompatibility of ico has been investigated; however, it should be noted that there are data suggesting that those who use icodextrin are still vulnerable to develop encapsulating peritoneal sclerosis (EPS) [13]. 2. Pharmacokinetics of Icodextrin Ico consists of a complex mixture of starch-derived water-soluble glucose
References
[1]
P. G. Blake, “Icodextrin: fifteen years and counting,” Peritoneal Dialysis International, vol. 29, no. 4, pp. 367–369, 2009.
[2]
D. S. Davies, “Kinetcs of icodextrin,” Peritoneal Dialysis International, vol. 14, supplement 2, pp. S45–S50, 1994.
[3]
J. Plum, S. Gentile, C. Verger, et al., “Metabolic and laboratory effect of icodextrin,” American Journal of Kidney Diseases, vol. 39, no. 4, pp. 862–871, 2002.
[4]
F. Finkelstein, H. Healy, A. Abu-Alfa et al., “Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration,” Journal of the American Society of Nephrology, vol. 16, no. 2, pp. 546–554, 2005.
[5]
C. J. A. M. Konings, J. P. Kooman, M. Schonck et al., “Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study,” Kidney International, vol. 63, no. 4, pp. 1556–1563, 2003.
[6]
M. E. Wilkie, M. J. Plant, L. Edwards, and C. B. Brown, “Icodextrin 7.5% dialysate solution (Glucose polymer) in patients with ultrafiltration failure: extension of CAPD technique survival,” Peritoneal Dialysis International, vol. 17, no. 1, pp. 84–87, 1997.
[7]
K. Honda, K. Nitta, S. Horita et al., “Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration,” Nephrology Dialysis Transplantation, vol. 14, no. 6, pp. 1541–1549, 1999.
[8]
P. Freida, B. Issad, M. Dratwa et al., “A combined crystalloid and colloid Pd solution as a glucose-sparing strategy for volume control in high-transport Apd Patients: a prospective multicenter study,” Peritoneal Dialysis International, vol. 29, no. 4, pp. 433–442, 2009.
[9]
J. Gobin, S. Fernando, S. Santacroce, and F. O. Finkelstein, “The utility of two daytime icodextrin exchanges to reduce dextrose exposure in automated peritoneal dialysis patients: a pilot study of nine patients,” Blood Purification, vol. 26, no. 3, pp. 279–283, 2008.
[10]
T. Sav, O. Oymak, M. T. Inanc, A. Dogan, B. Tokgoz, and C. Utas, “Effects of twice-daily icodextrin administration on blood pressure and left ventricular mass in patients on continuous ambulatory peritoneal dialysis,” Peritoneal Dialysis International, vol. 29, no. 4, pp. 443–449, 2009.
[11]
P. Dousdampanis, K. Trigka, M. Chu et al., “Two icodextrin exchanges per day in peritoneal dialysis patients with ultrafiltration failure: one center's experience and review of the literature,” International Urology and Nephrology, vol. 43, no. 1, pp. 203–209, 2011.
[12]
A. Ballout, E. Garcia-Lopez, J. Struyven, C. Marechal, and E. Goffin, “Double-dose icodextrin to increase ultrafiltration in pd patients with inadequate ultrafiltration,” Peritoneal Dialysis International, vol. 31, no. 1, pp. 91–94, 2011.
[13]
M. C. Brown, K. Simpson, J. J. Kerssens, and R. A. Mactier, “Encapsulating peritoneal sclerosis in the new millennium: a national cohort study,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 7, pp. 1222–1229, 2009.
[14]
R. M. Alsop, “History, chemical and pharmaceutical development of icodextrin,” Peritoneal Dialysis International, vol. 14, supplement 2, pp. S5–S12, 1994.
[15]
J. B. Moberly, S. Mujais, T. Gehr et al., “Pharmacokinetics of icodextrin in peritoneal dialysis patients,” Kidney International, Supplement, vol. 62, no. 81, pp. S23–S33, 2002.
[16]
J. M. Young and E. Weser, “The metabolism of circulating maltose in man,” Journal of Clinical Investigation, vol. 50, no. 5, pp. 986–991, 1971.
[17]
C. D. Mistry, R. Gokal, and E. Peers, “A randomized multicenter clinical trial comparing isosmolar icodextrin with hyper-osmolar glucose solutions in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Peitoneal Dialysis,” Kidney International, vol. 46, no. 2, pp. 496–503, 1994.
[18]
E. García-López, B. Anderstam, O. Heimbürger, G. Amici, A. Werynski, and B. Lindholm, “Determination of high and low molecular weight molecules of icodextrin in plasma and dialysate, using gel filtration chromatography, in peritoneal dialysis patients,” Peritoneal Dialysis International, vol. 25, no. 2, pp. 181–191, 2005.
[19]
J. Plum, S. Gentile, C. Verger et al., “Efficacy and safety of a 7.5% Icodextrin peritoneal dialysis solution in patients treated with automated peritoneal dialysis,” American Journal of Kidney Diseases, vol. 39, no. 4, pp. 862–871, 2002.
[20]
K. Ota, T. Akiba, T. Nakao et al., “Peritoneal ultrafiltration and serum icodextrin concentration during dialysis with 7.5% icodextrin solution in Japanese patients,” Peritoneal Dialysis International, vol. 23, no. 4, pp. 356–361, 2003.
[21]
A. W. de Boer, C. H. Schr?der, R. van Vliet, J. L. Willems, and L. A. H. Monnens, “Clinical experience with icodextrin in children: ultrafiltration profiles and metabolism,” Pediatric Nephrology, vol. 15, no. 1-2, pp. 21–24, 2000.
[22]
A. Rodríguez-Carmona, M. Pérez-Fontán, E. García López, T. García Falcón, and H. Díaz Cambre, “Use of icodextrin during nocturnal automated peritoneal dialysis allows sustained ultrafiltration while reducing the peritoneal glucose load: a randomized crossover study,” Peritoneal Dialysis International, vol. 27, no. 3, pp. 260–266, 2007.
[23]
N. Posthuma, P. M. Ter Wee, A. J. M. Donker et al., “Serum disaccharides and osmolality in CCPD patients using icodextrin or glucose as daytime dwell,” Peritoneal Dialysis International, vol. 17, no. 6, pp. 602–607, 1997.
[24]
E. Garcia-Lopez, B. Lindholm, and A. Tranaeus, “Biocompatibility of new peritoneal solutions: clinical experience,” Peritoneal Dialysis International, vol. 20, supplement 5, pp. S48–S54, 2000.
[25]
J. Perl, S. J. Nessim, and J. M. Bargman, “The biocompatibility of neutral pH, low-GDP peritoneal dialysis solutions: benefit at bench, bedside, or both,” Kidney International, vol. 79, no. 8, pp. 814–824, 2011.
[26]
J. Witowski, J. Wisniewska, K. Korybalska et al., “Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells,” Journal of the American Society of Nephrology, vol. 12, no. 11, pp. 2434–2441, 2001.
[27]
A. S. Charonis, L. A. Reger, J. E. Dege et al., “Laminin alterations after in vitro nonenzymatic glycosylation,” Diabetes, vol. 39, no. 7, pp. 807–814, 1990.
[28]
N. Posthuma, P. M. Ter Wee, A. J. M. Donker, P. L. Oe, E. M. Peers, and H. A. Verbrugh, “Assessment of the effectiveness, safety, and biocompatibility of icodextrin in automated peritoneal dialysis,” Peritoneal Dialysis International, vol. 20, supplement 2, pp. S106–S113, 2000.
[29]
S. J. Davies, E. A. Brown, N. E. Frandsen et al., “Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription,” Kidney International, vol. 67, no. 4, pp. 1609–1615, 2005.
[30]
M. A. Bajo, R. Selgas, M. A. Castro et al., “Icodextrin effluent leads to a greater proliferation than glucose effluent of human mesothelial cells studied ex vivo,” Peritoneal Dialysis International, vol. 20, no. 6, pp. 742–747, 2001.
[31]
A. Parikova, M. M. Zweers, D. G. Struijk, and R. T. Krediet, “Peritoneal effluent markers of inflammation in patients treated with icodextrin-based and glucose-based dialysis solutions,” Advances in Peritoneal Dialysis, vol. 19, pp. 186–190, 2003.
[32]
M. Moriishi and H. Kawanishi, “Icodextrin and intraperitoneal inflammation,” Peritoneal Dialysis International, vol. 28, supplement 3, pp. S96–S100, 2008.
[33]
M. Moriishi, H. Kawanishi, H. Watanabe, and S. Tsuchiya, “Effect of icodextrin-based peritoneal dialysis solution on peritoneal membrane,” Advances in Peritoneal Dialysis. Conference on Peritoneal Dialysis, vol. 21, pp. 21–24, 2005.
[34]
G. Queffeulou, M. Bernard, F. Vrtovsnik et al., “Severe cutaneous hypersensitivity requiring permanent icodextrin withdrawal in a CAPD patient,” Clinical Nephrology, vol. 51, no. 3, pp. 184–186, 1999.
[35]
F. Touré, S. Lavaud, M. Mohajer et al., “Icodextrin-induced peritonitis: study of five cases and comparison with bacterial peritonitis,” Kidney International, vol. 65, no. 2, pp. 654–660, 2004.
[36]
M. L. Lambie, B. John, L. Mushahar, C. Huckvale, and S. J. Davies, “The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made,” Kidney International, vol. 78, no. 6, pp. 611–618, 2010.
[37]
M. R. Korte, D. E. Sampimon, H. F. Lingsma, et al., “Risk factors associated with encapsulating peritoneal sclerosis in DUTCH EPS Study,” Peritoneal Dialysis International, vol. 31, no. 3, pp. 269–278, 2011.
[38]
R. T. Krediet, “Effects of icodextrin on the peritoneal membrane,” Nephrology Dialysis Transplantation, vol. 25, no. 5, pp. 1373–1375, 2010.
[39]
G. Woodrow, B. Oldroyd, G. Stables, J. Gibson, J. H. Turney, and A. M. Brownjohn, “Effects of icodextrin in automated peritoneal dialysis on blood pressure and bioelectrical impedance analysis,” Nephrology Dialysis Transplantation, vol. 15, no. 6, pp. 862–866, 2000.
[40]
C. Fourtounas, A. Hardalias, P. Dousdampanis, B. Papachristopoulos, E. Savidaki, and J. G. Vlachojannis, “Sodium removal in peritoneal dialysis: the role of icodextrin and peritoneal dialysis modalities,” Advances in Peritoneal Dialysis, vol. 24, pp. 27–31, 2008.
[41]
R. Paniagua, M. D. J. Ventura, M. ávila-Díaz et al., “Icodextrin improves metabolic and fluid management in high and high-average transport diabetic patients,” Peritoneal Dialysis International, vol. 29, no. 4, pp. 422–432, 2009.
[42]
S. B. Jenkins and M. E. Wilkie, “An exploratory study of a novel peritoneal combination dialysate (1.36% glucose/7.5% icodextrin), demonstrating improved ultrafiltration compared to either component studied alone,” Peritoneal Dialysis International, vol. 23, no. 5, pp. 475–480, 2003.
[43]
S. J. Davies, G. Woodrow, K. Donovan et al., “Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial,” Journal of the American Society of Nephrology, vol. 14, no. 9, pp. 2338–2344, 2003.
[44]
J. Perl and J. M. Bargman, “The importance of residual kidney function for patients on dialysis: a critical review,” American Journal of Kidney Diseases, vol. 53, no. 6, pp. 1068–1081, 2009.
[45]
E. Peers, “Icodextrin plus glucose combinations for use in CAPD,” Peritoneal Dialysis International, vol. 17, supplement 2, pp. S68–S69, 1997.
[46]
F. Dallas, S. B. Jenkins, and M. E. Wilkie, “Enhanced ultrafiltration using 7.5% icodextrin/1.36% glucose combination dialysate: a pilot study,” Peritoneal Dialysis International, vol. 24, no. 6, pp. 542–546, 2004.
[47]
P. Freida, M. Galach, J. C. Divino Filho, A. Werynski, and B. Lindholm, “Combination of crystalloid (glucose) and colloid (icodextrin) osmotic agents markedly enhances peritoneal fluid and solute transport during the long PD dwell,” Peritoneal Dialysis International, vol. 27, no. 3, pp. 267–276, 2007.
[48]
S. Davies, O. Carlsson, O. Simonsen et al., “The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status,” Nephrology Dialysis Transplantation, vol. 24, no. 5, pp. 1609–1617, 2009.
[49]
M. Galach, A. Werynski, J. Waniewski, P. Freida, and B. Lindholm, “Kinetic analysis of peritoneal fluid and solute transport with combination of glucose and icodextrin as osmotic agents,” Peritoneal Dialysis International, vol. 29, no. 1, pp. 72–80, 2009.
[50]
A. Akonour and J. K. Leypoldt, “Three-pore model predictions of 24- hour automated peritoneal dialysis therapy using bimodal solutions,” Peritoneal Dialysis International, vol. 31, no. 5, pp. 537–544, 2011.
[51]
B. Rippe and L. Levin, “Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD,” Kidney International, vol. 57, no. 6, pp. 2546–2556, 2000.
[52]
T. K. Jeloka, F. F. Ersoy, M. Yavuz et al., “What is the optimal dwell time for maximizing ultrafiltration with icodextrin exchange in automated peritoneal dialysis patients?” Peritoneal Dialysis International, vol. 26, no. 3, pp. 336–340, 2006.
[53]
T. Sav, M. T. Inanc, A. Dogan, O. Oymak, and C. Utas, “Two daytime icodextrin exchanges decrease brain natriuretic peptide levels and improve cardiac functions in continuous ambulatory peritoneal dialysis patients,” Nephrology, vol. 15, no. 3, pp. 307–312, 2010.
[54]
P. G. Blake, J. M. Bargman, K. S. Brimble, et al., “Clinical practice guidelines and recommendations on peritoneal dialysis adequacy 2011,” Peritoneal Dialysis International, vol. 31, no. 2, pp. 218–239, 2011.