Peritoneal dialysis catheter (PDC) is the lifeline of peritoneal dialysis (PD) patients. One of the critical issues for successful PD is a well-functioning PDC which is timely inserted. It is the implantation technique rather than the catheter design that determines the outcome of the catheter. Dedication in acquiring the appropriate technique is vital to the success of a PD program. In this paper, we discuss the pros and cons of various techniques used for PDC implantation. A detailed description of PDC implantation by using the minilaparotomy method is presented. We strongly recommend mini-laparotomy as the method of choice for PDC implantation by nephrologists. Peritoneal dialysis (PD) is a well-established technique of renal replacement therapy in patients with end-stage renal disease (ESRD). The advantages of PD include preservation of residual renal function, better patient survival in the first few years, better quality of life and cost-effectiveness over hemodialysis [1–4]. Thus, PD is well suited to act as a first-line renal replacement therapy in an integrated approach to end-stage renal failure care. In Hong Kong, “PD-first” policy has been adopted since mid-1980s. Currently, up to 80% of ESRD patients on maintenance dialysis are on PD. It has provided a successful model for the PD first policy. For a PD program to succeed, access to peritoneal dialysis catheter (PDC) implantation must be timely and the procedure must be performed by an experienced operator with low catheter failure rates and complications. PDC can be implanted percutaneously or by open surgery (Table 1). The standard percutaneous placement includes the “trocar and cannula” method and the Seldinger technique, with variations like fluoroscopy-assisted or peritoneoscopy-assisted placement. Open surgical approach includes minilaparotomy and laparoscopic placement. Table 1: Comparison of different methods of peritoneal dialysis catheter implantation. In many centers, PDC is implanted by surgeons, either by minilaparotomy or laparoscopic approach. However, referral to surgeons usually causes delay in initiating PD therapy, for both the waiting time to see a surgeon and the time required to arrange the operation afterwards. The date of implantation is often not under the control of nephrologists and this may make timely implantation of a PDC an impossible dream. Some patients may be forced to remain on hemodialysis with a central venous catheter, which is associated with an accelerated decrease in residual renal function and high rates of bacteremia and mortality. Survival data
References
[1]
M. A. M. Jansen, A. A. M. Hart, J. C. Korevaar, F. W. Dekker, E. W. Boeschoten, and R. T. Krediet, “Predictors of the rate of decline of residual renal function in incident dialysis patients,” Kidney International, vol. 62, no. 3, pp. 1046–1053, 2002.
[2]
D. J. Kim, J. H. Do, W. Huh, Y. G. Kim, and H. Y. Oh, “Dissociation between clearances of small and middle molecules in incremental peritoneal dialysis,” Peritoneal Dialysis International, vol. 21, no. 5, pp. 462–466, 2001.
[3]
M. Eisenberg, S. Prichard, P. Barre, R. Patton, T. Hutchinson, and A. Sniderman, “Left ventricular hypertrophy in end-stage renal disease on peritoneal dialysis,” The American Journal of Cardiology, vol. 60, no. 4, pp. 418–419, 1987.
[4]
R. Gokal, M. Figueras, A. Ollé, J. Rovira, and X. Badia, “Outcomes in peritoneal dialysis and haemodialysis—a comparative assessment of survival and quality of life,” Nephrology Dialysis Transplantation, vol. 14, supplement 6, pp. 24–30, 1999.
[5]
P. M. Just, M. C. Riella, E. A. Tschosik, L. L. Noe, S. K. Bhattacharyya, and F. de Charro, “Economic evaluations of dialysis treatment modalities,” Health Policy, vol. 86, no. 2-3, pp. 163–180, 2008.
[6]
E. D. Weinhandl, R. N. Foley, D. T. Gilbertson, T. J. Arneson, J. J. Snyder, and A. J. Collins, “Propensity-matched mortality comparison of incident hemodialysis and peritoneal dialysis patients,” Journal of the American Society of Nephrology, vol. 21, no. 3, pp. 499–506, 2010.
[7]
N. G. Kutner, R. Zhang, H. Barnhart, and A. J. Collins, “Health status and quality of life reported by incident patients after 1 year on haemodialysis or peritoneal dialysis,” Nephrology Dialysis Transplantation, vol. 20, no. 10, pp. 2159–2167, 2005.
[8]
M. F. Gadallah, A. Pervez, M. A. El-Shahawy et al., “Peritoneoscopic versus surgical placement of peritoneal dialysis catheters: a prospective randomized study on outcome,” American Journal of Kidney Diseases, vol. 33, no. 1, pp. 118–122, 1999.
[9]
A. Asif, P. Byers, F. Gadalean, and D. Roth, “Peritoneal dialysis underutilization: the impact of an interventional nephrology peritoneal dialysis access program,” Seminars in Dialysis, vol. 16, no. 3, pp. 266–271, 2003.
[10]
W. K. Lo, S. L. Lui, F. K. Li et al., “A prospective randomized study on three different peritoneal dialysis catheters,” Peritoneal Dialysis International, vol. 23, supplement 2, pp. S127–S131, 2003.
[11]
B. L. Goh, Y. M. Ganeshadeva, S. E. Chew, and M. S. Dalimi, “Does peritoneal dialysis catheter insertion by interventional nephrologists enhance peritoneal dialysis penetration?” Seminars in Dialysis, vol. 21, no. 6, pp. 561–566, 2008.
[12]
S. Henderson, E. Brown, and J. Levy, “Safety and efficacy of percutaneous insertion of peritoneal dialysis catheters under sedation and local anaesthetic,” Nephrology Dialysis Transplantation, vol. 24, no. 11, pp. 3499–3504, 2009.
[13]
A. Asif, T. A. Pflederer, C. F. Vieira, J. Diego, D. Roth, and A. Agarwal, “Does catheter insertion by nephrologists improve peritoneal dialysis utilization? A multicenter analysis,” Seminars in Dialysis, vol. 18, no. 2, pp. 157–160, 2005.
[14]
M. F. Gadallah, G. Ramdeen, C. Torres-Rivera et al., “Changing the trend: a prospective study on factors contributing to the growth rate of peritoneal dialysis programs,” Advances in Peritoneal Dialysis, vol. 17, pp. 122–126, 2001.
[15]
S. Varughese, V. Tamilarasi, C. K. Jacob, and G. T. John, “Jejunal mesenteric artery laceration following blind peritoneal catheter insertion using the trocar method,” Peritoneal Dialysis International, vol. 30, no. 5, pp. 573–574, 2010.
[16]
M. Valles, C. Cantarell, J. Vila, and J. L. Tovar, “Delayed perforation of the colon by a Tenckhoff catheter,” Peritoneal Dialysis Bulletin, vol. 2, no. 4, p. 190, 1982.
[17]
M. C. Sanderson, D. J. Swartzendruber, M. E. Fenoglio, J. T. Moore, and W. E. Haun, “Surgical complications of continuous ambulatory peritoneal dialysis,” American Journal of Surgery, vol. 160, no. 6, pp. 561–566, 1990.
[18]
T. Yip and W. K. Lo, “Should the “Trocar and cannula” method be used for peritoneal catheter implantation?” Peritoneal Dialysis International, vol. 30, no. 5, pp. 506–508, 2010.
[19]
O. Banli, H. Altun, and A. Oztemel, “Early start of CAPD with the Seldinger technique,” Peritoneal Dialysis International, vol. 25, no. 6, pp. 556–559, 2005.
[20]
S. Medani, M. Shantier, W. Hussein, C. Wall, and G. Mellotte, “A comparative analysis of percutaneous and open surgical techniques for peritoneal catheter placement,” Peritoneal Dialysis International, vol. 32, no. 6, pp. 628–635, 2012.
[21]
C. ?zener, A. Bihorac, and E. Akoglu, “Technical survival of CAPD catheters: comparison between percutaneous and conventional surgical placement techniques,” Nephrology Dialysis Transplantation, vol. 16, no. 9, pp. 1893–1899, 2001.
[22]
A. Asif, J. Tawakol, T. Khan et al., “Modification of the peritoneoscopic technique of peritoneal dialysis catheter insertion: experience of an interventional nephrology program,” Seminars in Dialysis, vol. 17, no. 2, pp. 171–173, 2004.
[23]
M. Allon, J. M. Soucie, and E. J. Macon, “Complications with permanent peritoneal dialysis catheters: experience with 154 percutaneously placed catheters,” Nephron, vol. 48, no. 1, pp. 8–11, 1988.
[24]
R. Swartz, J. Messana, L. Rocher, J. Reynolds, B. Starmann, and P. Lees, “The curled catheter: dependable device for percutaneous peritoneal access,” Peritoneal Dialysis International, vol. 10, no. 3, pp. 231–235, 1990.
[25]
M. Moreiras Plaza, L. Cuí?a, G. R. Goyanes, J. A. Sobrado, and L. Gonzalez, “Mechanical complications in chronic peritoneal dialysis,” Clinical Nephrology, vol. 52, no. 2, pp. 124–130, 1999.
[26]
S. Roueff, D. Pagniez, O. Moranne et al., “Simplified percutaneous placement of peritoneal dialysis catheters: comparison with surgical placement,” Peritoneal Dialysis International, vol. 22, no. 2, pp. 267–269, 2002.
[27]
N. Dombros, M. Dratwa, M. Feriani et al., “European best practice guidelines for peritoneal dialysis. 3 Peritoneal access,” Nephrology, Dialysis, Transplantation, vol. 20, supplement 9, pp. ix8–ix12, 2005.
[28]
A. Figueiredo, B. L. Goh, S. Jenkins et al., “Clinical practice guidelines for peritoneal access,” Peritoneal Dialysis International, vol. 30, no. 4, pp. 424–429, 2010.
[29]
M. Moreiras, L. Cui?a, G. Rguez Goyanes, J. A. Sobrado, and P. Gil, “Inadvertent placement of a Tenckhoff catheter into the urinary bladder,” Nephrology Dialysis Transplantation, vol. 12, no. 4, pp. 818–820, 1997.
[30]
M. H. Bamberger, B. Sullivan, F. T. Padberg Jr., and M. Yudd, “Iatrogenic placement of a tenckhoff catheter in the bladder of a diabetic patient after penectomy,” The Journal of Urology, vol. 150, no. 4, pp. 1238–1240, 1993.
[31]
R. Ekart, M. Horvat, R. Hojs, and B. Pe?ovnik-Balon, “An accident with Tenckhoff catheter placement: urinary bladder perforation,” Nephrology Dialysis Transplantation, vol. 21, no. 6, pp. 1738–1739, 2006.
[32]
B. G. Stegmayr, “Paramedian insertion of Tenckhoff catheters with three purse-string sutures reduces the risk of leakage,” Peritoneal Dialysis International, vol. 13, supplement 2, pp. S124–S126, 1993.
[33]
C. Kanokkantapong, N. Leeaphorn, and T. Kanjanabuch, “The effects of peritoneal dialysis catheter insertion using paramedian versus midline approach on CAPD patients,” Journal of the Medical Association of Thailand, vol. 94, supplement 4, pp. S52–S57, 2011.
[34]
P. H. A. Nijhuis, J. F. Smulders, and J. J. Jakimowicz, “Laparoscopic introduction of a continuous ambulatory peritoneal dialysis (capd) catheter by a two-puncture technique,” Surgical Endoscopy, vol. 10, no. 6, pp. 676–679, 1996.
[35]
J. H. Crabtree and A. Fishman, “A laparoscopic approach under local anesthesia for peritoneal dialysis access,” Peritoneal Dialysis International, vol. 20, no. 6, pp. 757–765, 2000.
[36]
A. Favazza, R. Petri, D. Montanaro, G. Boscutti, F. Bresadola, and G. Mioni, “Insertion of a straight peritoneal catheter in an arcuate subcutaneous tunnel by a tunneler: long-term experience,” Peritoneal Dialysis International, vol. 15, no. 8, pp. 357–362, 1995.
[37]
T. Yip, S. L. Lui, K. C. Tse et al., “A prospective randomized study comparing tenckhoff catheters inserted using the triple incision method with standard swan neck catheters,” Peritoneal Dialysis International, vol. 30, no. 1, pp. 56–62, 2010.
[38]
K. M. Chow, C. C. Szeto, C. B. Leung, B. C. H. Kwan, W. F. Pang, and P. K. T. Li, “Tenckhoff catheter insertion by nephrologists: open dissection technique,” Peritoneal Dialysis International, vol. 30, no. 5, pp. 524–527, 2010.
[39]
Y. F. Yang, H. J. Wang, C. C. Yeh, H. H. Lin, and C. C. Huang, “Early initiation of continuous ambulatory peritoneal dialysis in patients undergoing surgical implantation of Tenckhoff catheters,” Peritoneal Dialysis International, vol. 31, no. 5, pp. 551–557, 2011.
[40]
B. G. Stegmayr, “Three purse-string sutures allow immediate start of peritoneal dialysis with a low incidence of leakage,” Seminars in Dialysis, vol. 16, no. 4, pp. 346–348, 2003.
[41]
S. L. Lui, T. Yip, K. C. Tse, M. F. Lam, K. N. Lai, and W. K. Lo, “Treatment of refractory Pseudomonas aeruginosa exit-site infection by simultaneous removal and reinsertion of peritoneal dialysis catheter,” Peritoneal Dialysis International, vol. 25, no. 6, pp. 560–563, 2005.
[42]
B. Piraino, G. R. Bailie, J. Bernardini et al., “Peritoneal dialysis-related infections recommendations: 2005 update,” Peritoneal Dialysis International, vol. 25, no. 2, pp. 107–131, 2005.
[43]
M. J. Flanigan and R. Gokal, “Peritoneal catheters and exit-site practices toward optimum peritoneal access: a review of current developments,” Peritoneal Dialysis International, vol. 25, no. 2, pp. 132–139, 2005.