全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of the Direct Renin Inhibitor Aliskiren on Urinary Albumin Excretion in Spontaneous Type 2 Diabetic KK- Mouse

DOI: 10.1155/2013/519130

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Although angiotensin II-mediated inflammation and extracellular matrix accumulation are considered to be associated with the progression of diabetic nephropathy, these processes have not yet been sufficiently clarified. The objective of this study was to determine whether the correction of the abnormal renal expression of MMPs and its inhibitors (MMPs/TIMPs) and cytokines following the administration of aliskiren to KK- mice results in a renoprotective effect. Methods. KK- mice were divided into two groups, that is, untreated (saline) and treated (aliskiren) groups. Systolic BP, HbA1c levels, and the albumin-creatinine ratio (ACR) were measured. The renal expression of MMPs/TIMPs, fibronectin, type IV collagen, MCP-1, and (pro)renin receptor ((P)RR) was examined using real-time PCR and/or immunohistochemical staining. Renal MAPK and NF-κB activity were also examined by Western blot analyses and ELISA, respectively. Results. Significant decreases in systolic BP and ACR levels were observed in treated KK- mice compared with the findings in untreated KK- mice. Furthermore, increases in MMPs/TIMPs, fibronectin, type IV collagen, MCP-1, and (P)RR expression, in addition to MAPK and NF-κB activity, were significantly attenuated by aliskiren administration. Conclusions. It appears that aliskiren improves albuminuria and renal fibrosis by regulating inflammation and the alteration of collagen synthesis and degradation. 1. Introduction Recent studies suggest that chronic inflammation and extracellular matrix (ECM) accumulation promote the progression of diabetic nephropathy (DN) [1, 2]. We have also reported the increased renal expression of monocyte chemotactic protein (MCP)-1, fibronectin, and type IV collagen in KK- mice [3–5], a frequently used animal model of type 2 diabetes (T2D) [6]. Furthermore, angiotensin (Ang) II induces the phosphorylation of mitogen-activated protein kinase (MAPK) and increases nuclear factor (NF)-κB binding activity in this mouse model [5]. Several studies have suggested that the renin-angiotensin system (RAS) is one of the major mediators of the progression of glomerular hypertension, inflammation, and tubulointerstitial fibrosis, which leads to the progression of DN [7–9]. Aliskiren is the first agent in a new class of orally effective direct renin inhibitors approved for hypertension treatment [10, 11]. In contrast to conventional RAS blockers, angiotensin-converting enzyme (ACE) inhibitors and Ang II type 1 receptor blockers (ARBs), aliskiren blocks RAS by directly inhibiting plasma renin activity and preventing the

References

[1]  A. Mathew, R. Cunard, and K. Sharma, “Antifibrotic treatment and other new strategies for improving renal outcomes,” Contributions to Nephrology, vol. 170, pp. 217–227, 2011.
[2]  D. Choudhury, M. Tuncel, and M. Levi, “Diabetic nephropathy—a multifaceted target of new therapies,” Discovery Medicine, vol. 10, no. 54, pp. 406–415, 2010.
[3]  S. Hagiwara, Y. Makita, L. Gu et al., “Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice: involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation,” Nephrology Dialysis Transplantation, vol. 21, no. 3, pp. 605–615, 2006.
[4]  I. Ohara, M. Tanimoto, T. Gohda et al., “Effect of combination therapy with angiotensin receptor blocker and 1,25-dihydroxyvitamin D3 in type 2 diabetic nephropathy in KK- /Ta mice,” Nephron, vol. 117, no. 4, pp. e124–e132, 2011.
[5]  J. Y. Moon, M. Tanimoto, T. Gohda et al., “Attenuating effect of angiotensin-(1-7) on angiotensin II-mediated NAD(P)H oxidase activation in type 2 diabetic nephropathy of KK- /Ta mice,” American Journal of Physiology, vol. 300, no. 6, pp. F1271–F1282, 2011.
[6]  T. Ito, M. Tanimoto, K. Yamada et al., “Glomerular changes in the KK- /Ta mouse: a possible model for human type 2 diabetic nephropathy,” Nephrology, vol. 11, no. 1, pp. 29–35, 2006.
[7]  U. C. Brewster and M. A. Perazella, “The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease,” American Journal of Medicine, vol. 116, no. 4, pp. 263–272, 2004.
[8]  F. C. Luft, “Proinflammatory effects of angiotensin II and endothelin: targets for progression of cardiovascular and renal diseases,” Current Opinion in Nephrology and Hypertension, vol. 11, no. 1, pp. 59–66, 2002.
[9]  G. Wolf, “Angiotensin II as a mediator of tubulointerstitial injury,” Nephrology Dialysis Transplantation, vol. 15, supplement 6, pp. 61–63, 2000.
[10]  M. J. Brown, “Aliskiren,” Circulation, vol. 118, no. 7, pp. 773–784, 2008.
[11]  C. Jensen, P. Herold, and H. R. Brunner, “Aliskiren: the first renin inhibitor for clinical treatment,” Nature Reviews Drug Discovery, vol. 7, no. 5, pp. 399–410, 2008.
[12]  E. Yamamoto, K. Kataoka, Y. F. Dong et al., “Aliskiren enhances the protective effects of valsartan against cardiovascular and renal injury in endothelial nitric oxide synthase-deficient mice,” Hypertension, vol. 54, no. 3, pp. 633–638, 2009.
[13]  D. M. Riche, D. S. Minor, A. S. Holdiness, and H. E. East, “An issue of dependence: implications from the Aliskiren in the evaluation of proteinuria in diabetes (AVOID) trial,” Journal of Clinical Hypertension, vol. 11, no. 2, pp. 89–93, 2009.
[14]  H. H. Parving, B. M. Brenner, J. J. McMurray et al., “Baseline characteristics in the aliskiren trial in type 2 diabetes using cardio-renal endpoints (ALTITUDE),” Journal of the Renin-Angiotensin-Aldosterone System, vol. 13, no. 3, pp. 387–393, 2012.
[15]  C. Van Kooten, A. M. J. Langers, J. A. Bruijn, and M. R. Daha, “Role of tubular cells in progressive renal disease,” Kidney and Blood Pressure Research, vol. 22, no. 1-2, pp. 53–61, 1999.
[16]  S. Y. Han, Y. H. Jee, K. H. Han et al., “An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy,” Nephrology Dialysis Transplantation, vol. 21, no. 9, pp. 2406–2416, 2006.
[17]  P. Ronco and C. Chatziantoniou, “Matrix metalloproteinases and matrix receptors in progression and reversal of kidney disease: therapeutic perspectives,” Kidney International, vol. 74, no. 7, pp. 873–878, 2008.
[18]  M. Iwai, H. Kanno, Y. Tomono et al., “Direct renin inhibition improved insulin resistance and adipose tissue dysfunction in type 2 diabetic KK- mice,” Journal of Hypertension, vol. 28, no. 7, pp. 1471–1481, 2010.
[19]  R. M. Fryer, P. A. Rakestraw, M. Nakane et al., “Differential inhibition of renin mRNA expression by paricalcitol and calcitriol in C57/BL6 mice,” Nephron, vol. 106, no. 4, pp. p76–p81, 2007.
[20]  Q. Fan, J. Liao, M. Kobayashi et al., “Candesartan reduced advanced glycation end-products accumulation and diminished nitro-oxidative stress in type 2 diabetic KK/Ta mice,” Nephrology Dialysis Transplantation, vol. 19, no. 12, pp. 3012–3020, 2004.
[21]  Y. Ozawa, H. Kobori, Y. Suzaki, and L. G. Navar, “Sustained renal interstitial macrophage infiltration following chronic angiotensin II infusions,” American Journal of Physiology, vol. 292, no. 1, pp. F330–F339, 2007.
[22]  G. H. Tesch, “MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy,” American Journal of Physiology, vol. 294, no. 4, pp. F697–F701, 2008.
[23]  A. O. Phillips, R. Steadman, K. Morrisey, J. Martin, L. Eynstone, and J. D. Williams, “Exposure of human renal proximal tubular cells to glucose leads to accumulation of type IV collagen and fibronectin by decreased degradation,” Kidney International, vol. 52, no. 4, pp. 973–984, 1997.
[24]  P. Ronco, B. Lelongt, R. Piedagnel, and C. Chatziantoniou, “Matrix metalloproteinases in kidney disease progression and repair: a case of flipping the coin,” Seminars in Nephrology, vol. 27, no. 3, pp. 352–362, 2007.
[25]  S. X. Zhang, J. J. Wang, K. Lu, R. Mott, R. Longeras, and J. X. Ma, “Therapeutic potential of angiostatin in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 17, no. 2, pp. 475–486, 2006.
[26]  A. Inada, K. Nagai, H. Arai et al., “Establishment of a diabetic mouse model with progressive diabetic nephropathy,” American Journal of Pathology, vol. 167, no. 2, pp. 327–336, 2005.
[27]  S. Z. Sun, Y. Wang, Q. Li, Y. J. Tian, M. H. Liu, and Y. H. Yu, “Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats,” Chinese Medical Journal, vol. 119, no. 10, pp. 814–821, 2006.
[28]  S. V. McLennan, D. J. Kelly, A. J. Cox et al., “Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases,” Diabetologia, vol. 45, no. 2, pp. 268–275, 2002.
[29]  A. Dixon and C. Maric, “17β-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-β protein expression and signaling,” American Journal of Physiology, vol. 293, no. 5, pp. F1678–F1690, 2007.
[30]  A. A. Eddy, “Molecular insights into renal interstitial fibrosis,” Journal of the American Society of Nephrology, vol. 7, no. 12, pp. 2495–2508, 1996.
[31]  S. E. Thomson, S. V. McLennan, P. D. Kirwan et al., “Renal connective tissue growth factor correlates with glomerular basement membrane thickness and prospective albuminuria in a non-human primate model of diabetes: possible predictive marker for incipient diabetic nephropathy,” Journal of Diabetes and its Complications, vol. 22, no. 4, pp. 284–294, 2008.
[32]  A. Fornoni, L. J. Striker, F. Zheng, and G. E. Striker, “Reversibility of glucose-induced changes in mesangial cell extracellular matrix depends on the genetic background,” Diabetes, vol. 51, no. 2, pp. 499–505, 2002.
[33]  R. Singh, R. H. Song, N. Alavi, A. A. Pegoraro, A. K. Singh, and D. J. Leehey, “High glucose decreases matrix metalloproteinase-2 activity in rat mesangial cells via transforming growth factor-β1,” Experimental Nephrology, vol. 9, no. 4, pp. 249–257, 2001.
[34]  Y. Bai, L. Wang, Y. Li et al., “High ambient glucose levels modulates the production of MMP-9 and α5(IV) collagen by cultured podocytes,” Cellular Physiology and Biochemistry, vol. 17, no. 1-2, pp. 57–68, 2006.
[35]  E. Lupia, S. J. Elliot, O. Lenz et al., “IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy,” Diabetes, vol. 48, no. 8, pp. 1638–1644, 1999.
[36]  M. Diamantt, R. Hanemaaijer, J. H. Verheijen, J. W. A. Smit, J. K. Radder, and H. H. P. J. Lemkes, “Elevated matrix metalloproteinase-2 and -9 in urine, but not in serum, are markers of type 1 diabetic nephropathy,” Diabetic Medicine, vol. 18, no. 5, pp. 423–424, 2001.
[37]  K. Tashiro, I. Koyanagi, I. Ohara et al., “Levels of urinary matrix metalloproteinase-9 (MMP-9) and renal injuries in patients with type 2 diabetic nephropathy,” Journal of Clinical Laboratory Analysis, vol. 18, no. 3, pp. 206–210, 2004.
[38]  A. Lauhio, T. Sorsa, R. Srinivas et al., “Urinary matrix metalloproteinase -8, -9, -14 and their regulators (TRY-1, TRY-2, TATI) in patients with diabetic nephropathy,” Annals of Medicine, vol. 40, no. 4, pp. 312–320, 2008.
[39]  M. Kanauchi, H. Nishioka, Y. Nakashima, T. Hashimoto, and K. Dohi, “Role of tissue inhibitors of metalloproteinase in diabetic nephropathy,” Japanese Journal of Nephrology, vol. 38, no. 3, pp. 124–128, 1996.
[40]  M. Dharmani, M. R. Mustafa, F. I. Achike, and M. K. Sim, “Effects of angiotensin 1–7 on the actions of angiotensin II in the renal and mesenteric vasculature of hypertensive and streptozotocin-induced diabetic rats,” European Journal of Pharmacology, vol. 561, no. 1-3, pp. 144–150, 2007.
[41]  E. Ritz and V. Haxsen, “Angiotensin II and oxidative stress: an unholy alliance,” Journal of the American Society of Nephrology, vol. 14, no. 11, pp. 2985–2987, 2003.
[42]  G. Nguyen, F. Delarue, C. Burcklé, L. Bouzhir, T. Giller, and J. D. Sraer, “Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin,” Journal of Clinical Investigation, vol. 109, no. 11, pp. 1417–1427, 2002.
[43]  Y. Huang, N. A. Noble, J. Zhang, C. Xu, and W. A. Border, “Renin-stimulated TGF-β1 expression is regulated by a mitogen-activated protein kinase in mesangial cells,” Kidney International, vol. 72, no. 1, pp. 45–52, 2007.
[44]  Y. Huang, S. Wongamorntham, J. Kasting et al., “Renin increases mesangial cell transforming growth factor-β1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms,” Kidney International, vol. 69, no. 1, pp. 105–113, 2006.
[45]  S. Feldt, U. Maschke, R. Dechend, F. C. Luft, and D. N. Muller, “The putative (pro)renin receptor blocker HRP fails to prevent (pro)renin signaling,” Journal of the American Society of Nephrology, vol. 19, no. 4, pp. 743–748, 2008.
[46]  D. L. Feldman, L. Jin, H. Xuan et al., “Effects of aliskiren on blood pressure, albuminuria, and (pro)renin receptor expression in diabetic TG(mRen-2)27 Rats,” Hypertension, vol. 52, no. 1, pp. 130–136, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133