全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bisphenol A in Chronic Kidney Disease

DOI: 10.1155/2013/437857

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phenols are uremic toxins of intestinal origin formed by bacteria during protein metabolism. Of these molecules, p-cresol is the most studied and has been associated with renal function impairment and vascular damage. Bisphenol A (BPA) is a molecule with structural similarity with phenols found in plastic food and beverage containers as well as in some dialyzers. BPA is considered an environmental toxicant based on animal and cell culture studies. Japanese authorities recently banned BPA use in baby bottles based on observational association studies in newborns. BPA is excreted in urine and uremic patients present higher serum levels, but there is insufficient evidence to set cut-off levels or to link BPA to any harmful effect in CKD. However, the renal elimination and potential exposure during dialysis warrant the monitoring of BPA exposure and the design of observational studies in which the potential health risks of BPA for end-stage renal disease patients are evaluated. 1. Uremic Toxins Multiple molecules accumulate in chronic kidney disease (CKD), are responsible for uremic symptoms, and contribute to increased mortality (uremic toxins). Removal of uremic toxins therefore is accompanied by an improvement in the clinical situation. The term of uremic toxin was created by Piorry in 1847 to indicate the “blood contamination with urine” to refer to the signs and symptoms resulting from kidney disease that increase mortality. Bergstrom [1] proposed that a uremic toxin should be defined as one molecule that meets the following premises:(1)the chemical identity and concentration in biological fluids should be known,(2)the concentration in uremic individuals should be higher than in nonuremic subjects,(3)the concentration should correlate with uremic symptoms, and symptoms should disappear by decreasing the concentration. Uremic toxins have been classified according to size [2]. Over 350 small uremic toxins have been described with a molecular weight below 500?Da [3]. Medium-sized molecules have a molecular weight between 500 and 5000?Da. Many uremic toxins are bound to proteins which hamper their clearance. Uremic toxins are responsible for uremic disease. Among the changes that have been directly related to uremic toxins we find progressive loss of renal function, cardiovascular morbidity, and uremic symptoms such as anorexia, vomiting, weakness, sleep disturbances, and neuropathy. The origin of uremic toxins is multiple. Most uremic toxins originate from the endogenous cellular metabolism. However, there is a growing list of uremic toxins originated in

References

[1]  J. M. Bailey and W. E. Mitch, “Pathophysiology of uremia,” in Brenner and Rector. The Kidney, pp. 2059–2078, W. B. Saunders Company, 6th edition, 2000.
[2]  R. Vanholder, U. Baurmeister, P. Brunet, G. Cohen, G. Glorieux, and J. Jankowski, “A bench to bedside view of uremic toxins,” Journal of the American Society of Nephrology, vol. 19, no. 5, pp. 863–870, 2008.
[3]  E. P. Rhee, A. Souza, L. Farrell et al., “Metabolite profiling identifies markers of uremia,” Journal of the American Society of Nephrology, vol. 21, no. 6, pp. 1041–1051, 2010.
[4]  W. R. Wikoff, A. T. Anfora, J. Liu et al., “Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3698–3703, 2009.
[5]  D. S. Goldfarb, F. Modersitzki, and J. R. Asplin, “A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 4, pp. 745–749, 2007.
[6]  B. Bammens, P. Evenepoel, K. Verbeke, and Y. Vanrenterghem, “Removal of the protein-bound solute p-cresol by convective transport: a randomized crossover study,” American Journal of Kidney Diseases, vol. 44, no. 2, pp. 278–285, 2004.
[7]  A. Testa, T. Dejoie, D. Lecarrer, M. Wratten, L. Sereni, and J. L. Renaux, “Reduction of free immunoglobulin light chains using adsorption properties of hemodiafiltration with endogenous reinfusion,” Blood Purification, vol. 30, no. 1, pp. 34–36, 2010.
[8]  P. Evenepoel, B. K. I. Meijers, B. R. M. Bammens, and K. Verbeke, “Uremic toxins originating from colonic microbial metabolism,” Kidney International. Supplement, no. 114, pp. S12–S19, 2009.
[9]  N. Jourde-Chiche, L. Dou, C. Cerini, F. Dignat-George, R. Vanholder, and P. Brunet, “Protein-bound toxins—update 2009,” Seminars in Dialysis, vol. 22, no. 4, pp. 334–339, 2009.
[10]  A. W. Martinez, N. S. Recht, T. H. Hostetter, and T. W. Meyer, “Removal of P-cresol sulfate by hemodialysis,” Journal of the American Society of Nephrology, vol. 16, no. 11, pp. 3430–3436, 2005.
[11]  B. K. I. Meijers, B. Bammens, B. De Moor, K. Verbeke, Y. Vanrenterghem, and P. Evenepoel, “Free p-cresol is associated with cardiovascular disease in hemodialysis patients,” Kidney International, vol. 73, no. 10, pp. 1174–1180, 2008.
[12]  S. Schmidt, T. H. Westhoff, P. Krauser et al., “The uraemic toxin phenylacetic acid impairs macrophage function,” Nephrology Dialysis Transplantation, vol. 23, no. 11, pp. 3485–3493, 2008.
[13]  S. Schmidt, T. H. Westhoff, P. Krauser, W. Zidek, and M. Van Der Giet, “The uraemic toxin phenylacetic acid increases the formation of reactive oxygen species in vascular smooth muscle cells,” Nephrology Dialysis Transplantation, vol. 23, no. 1, pp. 65–71, 2008.
[14]  S. Yano, T. Yamaguchi, I. Kanazawa et al., “The uraemic toxin phenylacetic acid inhibits osteoblastic proliferation and differentiation: an implication for the pathogenesis of low turnover bone in chronic renal failure,” Nephrology Dialysis Transplantation, vol. 22, no. 11, pp. 3160–3165, 2007.
[15]  K. Yoshida, T. Yoneda, S. Kimura, K. Fujimoto, E. Okajima, and Y. Hirao, “Polyamines as an inhibitor on erythropoiesis of hemodialysis patients by in vitro bioassay using the fetal mouse liver assay,” Therapeutic Apheresis and Dialysis, vol. 10, no. 3, pp. 267–272, 2006.
[16]  F. Galli, S. Beninati, S. Benedetti et al., “Polymeric protein-polyamine conjugates: a new class of uremic toxins affecting erythropoiesis,” Kidney International, Supplement, vol. 59, no. 78, pp. S73–S76, 2001.
[17]  A. C. Raff, T. W. Meyer, and T. H. Hostetter, “New insights into uremic toxicity,” Current Opinion in Nephrology and Hypertension, vol. 17, no. 6, pp. 560–565, 2008.
[18]  V. Faure, L. Dou, F. Sabatier et al., “Elevation of circulating endothelial microparticles in patients with chronic renal failure,” Journal of Thrombosis and Haemostasis, vol. 4, no. 3, pp. 566–573, 2006.
[19]  M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka, “Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-κB and free radical in proximal tubular cells,” Kidney International, vol. 63, no. 5, pp. 1671–1680, 2003.
[20]  M. Satoh, H. Hayashi, M. Watanabe et al., “Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure,” Nephron Experimental Nephrology, vol. 95, no. 3, pp. e111–e118, 2003.
[21]  B. K. I. Meijers and P. Evenepoel, “The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression,” Nephrology Dialysis Transplantation, vol. 26, no. 3, pp. 759–761, 2011.
[22]  I.-W. Wu, K.-H. Hsu, C.-C. Lee et al., “P-cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 26, no. 3, pp. 938–947, 2011.
[23]  F. C. Barreto, D. V. Barreto, S. Liabeuf et al., “Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 10, pp. 1551–1558, 2009.
[24]  H. Yamamoto, S. Tsuruoka, T. Ioka et al., “Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells,” Kidney International, vol. 69, no. 10, pp. 1780–1785, 2006.
[25]  S. Lekawanvijit, A. Adrahtas, D. J. Kelly, A. R. Kompa, B. H. Wang, and H. Krum, “Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes?” European Heart Journal, vol. 31, no. 14, pp. 1771–1779, 2010.
[26]  C.-K. Chiang, T. Tanaka, R. Inagi, T. Fujita, and M. Nangaku, “Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner,” Laboratory Investigation, vol. 91, no. 11, pp. 1564–1571, 2011.
[27]  T. Nii-Kono, Y. Iwasaki, M. Uchida et al., “Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells,” Kidney International, vol. 71, no. 8, pp. 738–743, 2007.
[28]  M. Hida, Y. Aiba, S. Sawamura, N. Suzuki, T. Satoh, and Y. Koga, “Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oval administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis,” Nephron, vol. 74, no. 2, pp. 349–355, 1996.
[29]  A. Aguilera, M. A. Bajo, M. Espinoza et al., “Gastrointestinal and pancreatic function in peritoneal dialysis patients: their relationship with malnutrition and peritoneal membrane abnormalities,” American Journal of Kidney Diseases, vol. 42, no. 4, pp. 787–796, 2003.
[30]  V. De Preter, T. Vanhoutte, G. Huys et al., “Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructose-enriched inulin on colonic nitrogen-protein metabolism in healthy humans,” American Journal of Physiology, vol. 292, no. 1, pp. G358–G368, 2007.
[31]  I. Nakabayashi, M. Nakamura, K. Kawakami et al., “Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study,” Nephrology Dialysis Transplantation, vol. 26, no. 3, pp. 1094–1098, 2011.
[32]  P. Evenepoel, B. Bammens, K. Verbeke, and Y. Vanrenterghem, “Acarbose treatment lowers generation and serum concentrations of the protein-bound solute p-cresol: a pilot study,” Kidney International, vol. 70, no. 1, pp. 192–198, 2006.
[33]  P. Evenepoel and B. K. Meijers, “Dietary fiber and protein: nutritional therapy in chronic kidney disease and beyond,” Kidney International, vol. 81, no. 3, pp. 227–229, 2012.
[34]  T. Niwa, M. Ise, T. Miyazaki, and K. Meada, “Suppressive effect of an oral sorbent on the accumulation of p-cresol in the serum of experimental uremic rats,” Nephron, vol. 65, no. 1, pp. 82–87, 1993.
[35]  T. Shoji, A. Wada, K. Inoue et al., “Prospective randomized study evaluating the efficacy of the spherical adsorptive carbon AST-120 in chronic kidney disease patients with moderate decrease in renal function,” Nephron, vol. 105, no. 3, pp. c99–c107, 2007.
[36]  E. C. Dodds, L. Goldberg, W. Lawson, and B. Robinson, “OEstrogenic activity of certain synthetic compounds,” Nature, vol. 141, no. 3562, pp. 247–248, 1938.
[37]  N. Casajuana and S. Lacorte, “New methodology for the determination of phthalate esters, bisphenol A, bisphenol A diglycidyl ether, and nonylphenol in commercial whole milk samples,” Journal of Agricultural and Food Chemistry, vol. 52, no. 12, pp. 3702–3707, 2004.
[38]  B. M. Thomson and P. R. Grounds, “Bisphenol A in canned foods in New Zealand: an exposure assessment,” Food Additives and Contaminants, vol. 22, no. 1, pp. 65–72, 2005.
[39]  L. N. Vandenberg, I. Chahoud, J. J. Heindel, V. Padmanabhan, F. J. R. Paumgartten, and G. Schoenfelder, “Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A,” Environmental Health Perspectives, vol. 118, no. 8, pp. 1055–1070, 2010.
[40]  W. Dekant and W. V?lkel, “Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures,” Toxicology and Applied Pharmacology, vol. 228, no. 1, pp. 114–134, 2008.
[41]  M. F. L. Lemos, C. A. M. Van Gestel, and A. M. V. M. Soares, “Developmental toxicity of endocrine disrupters bisphenol A and vinclozolin in a terrestrial isopod,” Archives of Environmental Contamination and Toxicology, vol. 59, no. 2, pp. 274–281, 2010.
[42]  V. Bindhumol, K. C. Chitra, and P. P. Mathur, “Bisphenol A induces reactive oxygen species generation in the liver of male rats,” Toxicology, vol. 188, no. 2-3, pp. 117–124, 2003.
[43]  A. B. Ropero, P. Alonso-Magdalena, E. García-García, C. Ripoll, E. Fuentes, and A. Nadal, “Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis,” International Journal of Andrology, vol. 31, no. 2, pp. 194–199, 2008.
[44]  C. A. Richter, L. S. Birnbaum, F. Farabollini et al., “In vivo effects of bisphenol A in laboratory rodent studies,” Reproductive Toxicology, vol. 24, no. 2, pp. 199–224, 2007.
[45]  O. Vasiliu, L. Cameron, J. Gardiner, P. DeGuire, and W. Karmaus, “Polybrominated biphenyls, polychlorinated biphenyls, body weight, and incidence of adult-onset diabetes mellitus,” Epidemiology, vol. 17, no. 4, pp. 352–359, 2006.
[46]  J. M. Braun and R. Hauser, “Bisphenol A and children's health,” Current Opinion in Pediatrics, vol. 23, no. 2, pp. 233–239, 2011.
[47]  F. Perera, J. Vishnevetsky, J. B. Herbstman et al., “Prenatal bisphenol A exposure and child behavior in an inner-city cohort,” Environmental Health Perspectives, vol. 120, no. 8, pp. 1190–1194, 2012.
[48]  T. Wang, M. Li, B. Chen et al., “Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 2, pp. E223–E227, 2012.
[49]  A. Shankar and S. Teppala, “Relationship between urinary bisphenol A levels and diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 12, pp. 3822–3826, 2011.
[50]  P. M. Lind and L. Lind, “Circulating levels of bisphenol A and phthalates are related to carotid atherosclerosis in the elderly,” Atherosclerosis, vol. 218, no. 1, pp. 207–213, 2011.
[51]  FDA (Food and drug Administration) Draft assessment of bisphenol A for use in food contact applications, http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm064437.htm.
[52]  L. N. Vandenberg, I. Chahoud, V. Padmanabhan, F. J. R. Paumgartten, and G. Schoenfelder, “Biomonitoring studies should be used by regulatory agencies to assess human exposure levels and safety of bisphenol A,” Environmental Health Perspectives, vol. 118, no. 8, pp. 1051–1054, 2010.
[53]  Y.-J. Yang, S.-Y. Lee, K.-Y. Kim, and Y.-P. Hong, “Acute testis toxicity of bisphenol a diglycidyl ether in Sprague-Dawley rats,” Journal of Preventive Medicine and Public Health, vol. 43, no. 2, pp. 131–137, 2010.
[54]  M. E. Kim, H. R. Park, E. J. Gong, S. Y. Choi, H. S. Kim, and J. Lee, “Exposure to bisphenol A appears to impair hippocampal neurogenesis and spatial learning and memory,” Food and Chemical Toxicology, vol. 49, no. 12, pp. 3383–3389, 2011.
[55]  C. R. Gon?alves, R. W. Cunha, D. M. Barros, and P. E. Martínez, “Effects of prenatal and postnatal exposure to a low dose of bisphenol A on behavior and memory in rats,” Environmental Toxicology and Pharmacology, vol. 30, no. 2, pp. 195–201, 2010.
[56]  X. Xu, D. Tian, X. Hong, L. Chen, and L. Xie, “Sex-specific influence of exposure to bisphenol-A between adolescence and young adulthood on mouse behaviors,” Neuropharmacology, vol. 61, no. 4, pp. 565–573, 2011.
[57]  H. B. Patisaul and E. K. Polston, “Influence of endocrine active compounds on the developing rodent brain,” Brain Research Reviews, vol. 57, no. 2, pp. 352–362, 2008.
[58]  B. S. Rubin and A. M. Soto, “Bisphenol A: perinatal exposure and body weight,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 55–62, 2009.
[59]  E. Somm, V. M. Schwitzgebel, A. Toulotte et al., “Perinatal exposure to bisphenol A alters early adipogenesis in the rat,” Environmental Health Perspectives, vol. 117, no. 10, pp. 1549–1555, 2009.
[60]  S. C. Nagel, F. S. Vom Saal, K. A. Thayer, M. G. Dhar, M. Boechler, and W. V. Welshons, “Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol,” Environmental Health Perspectives, vol. 105, no. 1, pp. 70–76, 1997.
[61]  B. G. Timms, K. L. Howdeshell, L. Barton, S. Bradley, C. A. Richter, and F. S. Vom Saal, “Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 19, pp. 7014–7019, 2005.
[62]  G. S. Prins, W.-Y. Tang, J. Belmonte, and S.-M. Ho, “Developmental exposure to bisphenol A increases prostate cancer susceptibility in adult rats: epigenetic mode of action is implicated,” Fertility and Sterility, vol. 89, no. 2, supplement, p. e41, 2008.
[63]  S. Salian, T. Doshi, and G. Vanage, “Perinatal exposure of rats to Bisphenol A affects fertility of male offspring-An overview,” Reproductive Toxicology, vol. 31, no. 3, pp. 359–362, 2011.
[64]  J. L. Carwile, X. Ye, X. Zhou, A. M. Calafat, and K. B. Michels, “Canned soup consumption and urinary bisphenol A: a randomized crossover trial,” Journal of the American Medical Association, vol. 306, no. 20, pp. 2218–2220, 2011.
[65]  J. M. Braun, K. Yolton, K. N. Dietrich et al., “Prenatal bisphenol A exposure and early childhood behavior,” Environmental Health Perspectives, vol. 117, no. 12, pp. 1945–1952, 2009.
[66]  D. Melzer, N. J. Osborne, W. E. Henley et al., “Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women,” Circulation, vol. 125, no. 12, pp. 1482–1490, 2012.
[67]  A. Shankar and S. Teppala, “Urinary bisphenol A and hypertension in a multiethnic sample of US adults,” Journal of Environmental and Public Health, vol. 2012, Article ID 481641, 5 pages, 2012.
[68]  M. Li, Y. Bi, L. Qi et al., “Exposure to bisphenol A is associated with low-grade albuminuria in Chinese adults,” Kidney International, vol. 81, pp. 1131–1138, 2012.
[69]  L. Trasande, T. M. Attina, and H. Trachtman, “Bisphenol A exposure is associated with low-grade urinary albumin excretion in children of the United States,” Kidney International, vol. 83, no. 4, pp. 741–748, 2013.
[70]  L. You, X. Zhu, M. J. Shrubsole et al., “Renal function, bisphenol A, and alkylphenols: results from the National Health and Nutrition Examination Survey (NHANES 2003–2006),” Environmental Health Perspectives, vol. 119, no. 4, pp. 527–533, 2011.
[71]  K. Murakami, A. Ohashi, H. Hori et al., “Accumulation of bisphenol A in hemodialysis patients,” Blood Purification, vol. 25, no. 3, pp. 290–294, 2007.
[72]  M. F. Boeniger, L. K. Lowry, and J. Rosenberg, “Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review,” American Industrial Hygiene Association Journal, vol. 54, no. 10, pp. 615–627, 1993.
[73]  Y. Haishima, Y. Hayashi, T. Yagami, and A. Nakamura, “Elution of bisphenol-A from hemodialyzers consisting of polycarbonate and polysulfone resins,” Journal of Biomedical Materials Research, vol. 58, no. 2, pp. 209–215, 2001.
[74]  H. Shintani, “Determination of the endocrine disrupter bisphenol-A in the blood of uremia patients treated by dialysis,” Chromatographia, vol. 53, no. 5-6, pp. 331–333, 2001.
[75]  H. Yamasaki, Y. Nagake, and H. Makino, “Determination of bisphenol A in effluents of hemodialyzers,” Nephron, vol. 88, no. 4, pp. 376–378, 2001.
[76]  D. H. Krieter, B. Canaud, H. D. Lemke et al., “Bisphenol A in chronic kidney disease,” Artificial Organs, vol. 37, no. 3, pp. 283–290, 2013.
[77]  K. Sugimura, T. Naganuma, Y. Kakiya, C. Okada, T. Sugimura, and T. Kishimoto, “Endocrine-disrupting chemicals in CAPD dialysate and effluent,” Blood Purification, vol. 19, no. 1, pp. 21–23, 2001.
[78]  F. Duranton, G. Cohen, R. De Smet et al., “Normal and pathologic concentrations of uremic toxins,” Journal of the American Society of Nephrology, vol. 23, no. 7, pp. 1258–1270, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133