全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Intensive Blood Pressure Control on Cardiovascular Remodeling in Hypertensive Patients with Nephrosclerosis

DOI: 10.1155/2013/120167

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pulse pressure (PP), a marker of arterial system properties, has been linked to cardiovascular (CV) complications. We examined (a) association between unit changes of PP and (i) composite CV outcomes and (ii) development of left-ventricular hypertrophy (LVH) and (b) effect of mean arterial pressure (MAP) control on rate of change in PP. We studied 1094 nondiabetics with nephrosclerosis in the African American Study of Kidney Disease and Hypertension. Subjects were randomly assigned to usual MAP goal (102–107?mmHg) or a lower MAP goal (≤92?mmHg) and randomized to beta-blocker, angiotensin converting enzyme inhibitor, or calcium channel blocker. After covariate adjustment, a higher PP was associated with increased risk of CV outcome (RR = 1.28, CI = 1.11–1.47, ) and new LVH (RR = 1.26, CI = 1.04–1.54, ). PP increased at a greater rate in the usual than in lower MAP groups (slope ± SE: 1.08 ± 0.15 versus 0.42 ± 0.15 mmHg/year, ), but not by the antihypertensive treatment assignment. Observations indicate that control to a lower MAP slows the progression of PP, a correlate of cardiovascular remodeling and complications, and may be beneficial to CV health. 1. Introduction Population and hospital-based studies [1, 2] have demonstrated that persistently elevated blood pressure (BP) levels increase the risk of cardiovascular (CV) events and subsequent CV mortality. Though the precise mechanisms of this association are still being investigated, several studies have detected a direct link between increased BP variability and target-organ damage [3–7]. The major target organs for the complications of elevated BP are the kidneys, heart, brain, and the arterial system. Study of the character of vascular alterations and the time course of such alterations is important to better understand the mechanism of hypertensive process. Retta and Randall [8] have suggested that target-organ damage is the result of an integrated effect of BP level as a function of time, whether it is continuously elevated or intermittent increases of pressure. Arterial stiffness is linked with changes in BP profile, characterized by isolated increase in systolic pressure and/or increase in pulse pressure (PP). Increased PP can result from an increase in systolic pressure and/or a decrease in diastolic pressure, which is typical for advanced arteriosclerosis and is responsible for the diastolic pressure stabilization or decline observed in aging [9]. Investigations in hypertension have generally focused on the steady components of blood pressure, such as mean arterial pressure (MAP), which is

References

[1]  M. Kikuya, A. Hozawa, T. Ohokubo et al., “Prognostic significance of blood pressure and heart rate variabilities: The Ohasama Study,” Hypertension, vol. 36, no. 5, pp. 901–906, 2000.
[2]  D. Sander, C. Kukla, J. Klingelh?fer, K. Winbeck, and B. Conrad, “Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: a 3-year follow-up study,” Circulation, vol. 102, no. 13, pp. 1536–1541, 2000.
[3]  J. A. Staessen, L. Thijs, R. Fagard et al., “Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension,” Journal of the American Medical Association, vol. 282, no. 6, pp. 539–546, 1999.
[4]  P. Verdecchia, G. Schillaci, C. Borgioni, A. Ciucci, S. Pede, and C. Porcellati, “Ambulatory pulse pressure: a potent predictor of total cardiovascular risk in hypertension,” Hypertension, vol. 32, no. 6, pp. 983–988, 1998.
[5]  P. Verdecchia, G. Schillaci, G. Reboldi, S. S. Franklin, and C. Porcellati, “Different prognostic impact of 24-hour mean blood pressure and pulse pressure on stroke and coronary artery disease in essential hypertension,” Circulation, vol. 103, no. 21, pp. 2579–2584, 2001.
[6]  G. Mancia, A. Zanchetti, E. Agebiti-Rosei et al., “Ambulatory blood pressure is superior to clinic blood pressure in predicting treatment-induced regression of left ventricular hypertrophy,” Circulation, vol. 95, no. 6, pp. 1464–1470, 1997.
[7]  G. Parati, G. Pomidossi, and F. Albini, “Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension,” Journal of Hypertension, vol. 5, no. 1, pp. 93–98, 1987.
[8]  T. M. Retta and O. S. Randall, “Hypertension and concomitant diseases: a guide for evidence-based therapy,” Journal of the National Medical Association, vol. 96, no. 4, pp. 450–460, 2004.
[9]  S. S. Franklin, S. A. Khan, N. D. Wong, M. G. Larson, and D. Levy, “Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham Heart Study,” Circulation, vol. 100, no. 4, pp. 354–360, 1999.
[10]  M. O'Rourke, Arterial Function in Health and Disease, Churchill Livingstone, Edinburgh, Scotland, 1982.
[11]  W. W. Nichols, F. A. Nicolini, and C. J. Pepine, “Determinants of isolated systolic hypertension in the elderly,” Journal of Hypertension, vol. 10, no. 6, pp. S73–S77, 1992.
[12]  S. S. Franklin, K. Sutton-Tyrrell, S. H. Belle, M. A. Weber, and L. H. Kuller, “The importance of pulsatile components of hypertension in predicting carotid stenosis in older adults,” Journal of Hypertension, vol. 15, no. 10, pp. 1143–1150, 1997.
[13]  M. Suurkula, S. Agewall, B. Fagerberg, I. Wendelhag, B. Widgren, and J. Wikstrand, “Ultrasound evaluation of atherosclerotic manifestations in the carotid artery in high-risk hypertensive patients,” Arteriosclerosis and Thrombosis, vol. 14, no. 8, pp. 1297–1304, 1994.
[14]  D. Liao, L. Cooper, J. Cai et al., “The prevalence and severity of white matter lesions, their relationship with age, ethnicity, gender, and cardiovascular disease risk factors: The ARIC study,” Neuroepidemiology, vol. 16, no. 3, pp. 149–162, 1997.
[15]  V. Vaccarino, T. R. Holford, and H. M. Krumholz, “Pulse pressure and risk for myocardial infarction and heart failure in the elderly,” Journal of the American College of Cardiology, vol. 36, no. 1, pp. 130–138, 2000.
[16]  X. Girerd, S. Laurent, B. Pannier, R. Asmar, and M. Safar, “Arterial distensibility and left ventricular hypertrophy in patients with sustained essential hypertension,” American Heart Journal, vol. 122, no. 4, pp. 1210–1214, 1991.
[17]  R. T. Lyon, A. Runyon-Hass, H. R. Davis, S. Glagov, and C. K. Zarins, “Protection from atherosclerotic lesion formation by reduction of artery wall motion,” Journal of Vascular Surgery, vol. 5, no. 1, pp. 59–67, 1987.
[18]  G. L. Baumbach, J. E. Siems, and D. D. Heistad, “Effects of local reduction in pressure on distensibility and composition of cerebral arterioles,” Circulation Research, vol. 68, no. 2, pp. 338–351, 1991.
[19]  US Renal Data System, “Annual report. Bethesda, MD, the national institute of diabetes and digestive and kidney diseases,” American Journal of Kidney Diseases, vol. 32S, pp. 81–88, 1998.
[20]  M. J. Klag, P. K. Whelton, B. L. Randall et al., “Blood pressure and end-stage renal disease in men,” The New England Journal of Medicine, vol. 334, no. 1, pp. 13–18, 1996.
[21]  US Renal Data System, USRDS, 2001 Annual Data Report, Atlas of End Stage Renal Disease in the United States, Bethesda, MD, National Institutes of Health, National Institutes of Diabetes, Digestive, and Kidney Diseases, 2001.
[22]  G. M. London, S. J. Marchais, A. P. Guerin, F. Metivier, and H. Adda, “Arterial structure and function in end-stage renal disease,” Nephrology Dialysis Transplantation, vol. 17, no. 10, pp. 1713–1724, 2002.
[23]  P. S. Klassen, E. G. Lowrie, D. N. Reddan et al., “Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis,” Journal of the American Medical Association, vol. 287, no. 12, pp. 1548–1555, 2002.
[24]  M. Tozawa, K. Iseki, C. Iseki, and S. Takishita, “Pulse pressure and risk of total mortality and cardiovascular events in patients on chronic hemodialysis,” Kidney International, vol. 61, no. 2, pp. 717–726, 2002.
[25]  L. J. Appel, J. Middleton, E. R. Miller III et al., “The rationale and design of the AASK Cohort Study,” Journal of the American Society of Nephrology, vol. 14, no. 2, pp. S166–S172, 2003.
[26]  J. J. Gassman, T. Greene, J. T. Wright Jr. et al., “Design and statistical aspects of the African American Study of Kidney Disease and Hypertension (AASK),” Journal of the American Society of Nephrology, vol. 14, no. 2, pp. S154–S165, 2003.
[27]  J. T. Wright Jr., G. Bakris, T. Greene et al., “Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial,” Journal of the American Medical Association, vol. 288, no. 19, pp. 2421–2431, 2002.
[28]  L. Y. Agodoa, L. Appel, G. L. Bakris et al., “Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial,” Journal of the American Medical Association, vol. 285, no. 21, pp. 2719–2728, 2001.
[29]  L. J. Appel, J. T. Wright Jr., T. Greene, et al., “Intensive blood-pressure control in hypertensive chronic kidney disease,” The New England Journal of Medicine, vol. 363, no. 10, pp. 918–929, 2010.
[30]  J.-J. Mourad, B. Pannier, J. Blacher et al., “Creatinine clearance, pulse wave velocity, carotid compliance and essential hypertension,” Kidney International, vol. 59, no. 5, pp. 1834–1841, 2001.
[31]  T. Savage, M. Giles, C. V. Tomson, and A. E. G. Raine, “Gender differences in mediators of left ventricular hypertrophy in dialysis patients,” Clinical Nephrology, vol. 49, no. 2, pp. 107–112, 1998.
[32]  L. J. Appel, J. T. Wright Jr., T. Greene et al., “Long-term effects of renin-angiotensin system-blocking therapy and a low blood pressure goal on progression of hypertensive chronic kidney disease in African Americans,” Archives of Internal Medicine, vol. 168, no. 8, pp. 832–839, 2008.
[33]  O. S. Randall, G. C. van den Bos, and N. Westerhof, “Systemic compliance: does it play a role in the genesis of essential hypertension?” Cardiovascular Research, vol. 18, no. 8, pp. 455–462, 1984.
[34]  G. M. London, S. J. Marchais, M. E. Safar et al., “Aortic and large artery compliance in end-stage renal failure,” Kidney International, vol. 37, no. 1, pp. 137–142, 1990.
[35]  R. Virmani, A. P. Avolio, W. J. Mergner et al., “Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis: comparison between occidental and Chinese communities,” American Journal of Pathology, vol. 139, no. 5, pp. 1119–1129, 1991.
[36]  Y. Matsumoto, M. Hamada, and K. Hiwada, “Aortic distensibility is closely related to the progression of left ventricular hypertrophy in patients receiving hemodialysis,” Angiology, vol. 51, no. 11, pp. 933–941, 2000.
[37]  S. Julius, S. E. Kjeldsen, M. Weber et al., “Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial,” The Lancet, vol. 363, no. 9426, pp. 2022–2031, 2004.
[38]  J. Blacher, J. A. Staessen, X. Girerd et al., “Pulse pressure not mean pressure determines cardiovascular risk in older hypertensive patients,” Archives of Internal Medicine, vol. 160, no. 8, pp. 1085–1089, 2000.
[39]  O. S. Randall, N. Westerhof, G. C. van den Bos, and B. Alexander, “Reliability of stroke volume to pulse pressure ratio for estimating and detecting changes in arterial compliance,” Journal of Hypertension, vol. 4, no. 5, pp. S293–S296, 1986.
[40]  J. J. Ferguson III and O. S. Randall, “Hemodynamic correlates of arterial compliance,” Catheterization and Cardiovascular Diagnosis, vol. 12, no. 6, pp. 376–380, 1986.
[41]  T. Gudbrandsson, S. Julius, L. Krause et al., “Correlates of the estimated arterial compliance in the population of Tecumseh, Michigan,” Blood Pressure, vol. 1, no. 1, pp. 27–34, 1992.
[42]  O. S. Randall, G. C. Mekasha, E. I. Flanklin, A. R. Maqbool, and S. Xu, “How hypertension begets hypertension,” American Journal of Hypertension, vol. 12, pp. 169–176, 1999.
[43]  C. J. A. M. Konings, R. Dammers, P. L. Rensma et al., “Arterial wall properties in patients with renal failure,” American Journal of Kidney Diseases, vol. 39, no. 6, pp. 1206–1212, 2002.
[44]  M. Barenbrock, C. Spieker, V. Laske et al., “Studies of the vessel wall properties in hemodialysis patients,” Kidney International, vol. 45, no. 5, pp. 1397–1400, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133