全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Peritoneal Dialysis Treatment on Arterial Stiffness and Vascular Changes in Diabetic Type 2 and Nondiabetic Patients with End-Stage Renal Disease

DOI: 10.1155/2013/681454

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diabetes mellitus (DM) is the leading cause of the end-stage renal disease (ESRD). Vascular diseases are the most common cause of morbidity and mortality in the chronic kidney disease. The aim of this study was to analyze the impact of peritoneal dialysis (PD) treatment on morphologic and hemodynamic vascular parameters of carotid arteries in diabetic type 2 and nondiabetic patients with ESRD during the period of one year after the start of PD treatment using ultrasonography of carotid arteries and their relation on uremia and PD inherent factors. Mean intima-media thickness, plaque score, peak systolic velocity, end-diastolic velocity, and carotid diameter significantly decreased 12 months after PD treatment start in both groups. Significant reduction in median serum endothelin-1 concentration after 12 months on PD treatment was observed in the group of patients with DM (7.6–5.9?pg/mL) and also in group of patients without DM (3.6–3.3?pg/mL). Also median nitric oxide concentration significantly increased after 12 months on PD compared to baseline levels both in patients with DM (25.0–34.3?μmol/L) as was observed in patients without DM (49.6–56.5?μmol/L). PD treatment, with the regulation of these vasoactive molecules and other vascular risk factors, significantly contributes to vascular remodeling, especially in DM patients. 1. Introduction Diabetes mellitus (DM) is the leading cause of the end-stage renal disease (ESRD) in many countries of the world. In Bosnia and Herzegovina, 17.3% of dialysis patients have primarily diabetes mellitus, while in Korea as many as 44.9% dialysis patients developed ESRD as a consequence of diabetes nephropathy [1]. Although the survival rate in DM patients with ESRD partially improved, it is still significantly lower than that in general population [2]. The results of NECOSAD study showed that survival in diabetic patients with ESRD was worse compared to nondiabetic patients and that diabetes mellitus has a very strong impact on survival even if it is not the primary cause of ESRD [3]. Risk factors for cardiovascular death in these patients include those that affect the general population as well as those related to end-stage renal disease and those that are specific to peritoneal dialysis. The development of over hydration after loss of residual renal function (RRF) is probably the most important cardiovascular risk factor specific to peritoneal dialysis. The high glucose load associated with peritoneal dialysis may lead to insulin resistance and to the development of an atherogenic lipid profile. The presence of

References

[1]  S. H. Chung, D. C. Han, H. Noh et al., “Risk factors for mortality in diabetic peritoneal dialysis patients,” Nephrology, Dialysis, Transplantation, vol. 25, no. 11, pp. 3742–3748, 2010.
[2]  E. Villar, L. Remontet, M. Labeeuw, and R. Ecochard, “Effect of age, gender, and diabetes on excess death in end-stage renal failure,” Journal of the American Society of Nephrology, vol. 18, no. 7, pp. 2125–2134, 2007.
[3]  M. A. Schroijen, O. M. Dekkers, D. C. Grootendorst et al., “Survival in dialysis patients is not different between patients with diabetes as primary renal disease and patients with diabetes as a co-morbid condition,” BMC Nephrology, vol. 12, no. 1, article 69, 2011.
[4]  R. T. Krediet and O. Balafa, “Cardiovascular risk in the peritoneal dialysis patient,” Nature Reviews Nephrology, vol. 6, no. 8, pp. 451–460, 2010.
[5]  N. Prasad, S. Kumar, A. Singh et al., “Carotid intimal thickness and flow-mediated dilatation in diabetic and nondiabetic continuous ambulatory peritoneal dialysis patients,” Peritoneal Dialysis International, vol. 29, supplement 2, pp. S96–S101, 2009.
[6]  R. Pecoits-Filho, “The peritoneal cavity: a room with a view to the endothelium,” Peritoneal Dialysis International, vol. 25, no. 5, pp. 432–434, 2005.
[7]  E. García-López, J. J. Carrero, M. E. Suliman, B. Lindholm, and P. Stenvinkel, “Risk factors for cardiovascular disease in patients undergoing peritoneal dialysis,” Peritoneal Dialysis International, vol. 27, supplement 2, pp. S205–S209, 2007.
[8]  J. Blacher, A. P. Guerin, B. Pannier, S. J. Marchais, and G. M. London, “Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease,” Hypertension, vol. 38, no. 4, pp. 938–942, 2001.
[9]  F. M. Yilmaz, H. Akay, M. Duranay et al., “Carotid atherosclerosis and cardiovascular risk factors in hemodialysis and peritoneal dialysis patients,” Clinical Biochemistry, vol. 40, no. 18, pp. 1361–1366, 2007.
[10]  P. E. Watson, I. D. Watson, and R. D. Batt, “Total body water volumes for adult males and females estimated from simple anthropometric measurements,” American Journal of Clinical Nutrition, vol. 33, no. 1, pp. 27–39, 1980.
[11]  S. H. Chung, W. S. Chu, H. A. Lee et al., “Peritoneal transport characteristics, comorbid diseases and survival in CAPD patients,” Peritoneal Dialysis International, vol. 20, no. 5, pp. 541–547, 2000.
[12]  B. Coll, A. Betriu, M. Martínez-Alonso et al., “Cardiovascular risk factors underestimate atherosclerotic burden in chronic kidney disease: usefulness of non-invasive tests in cardiovascular assessment,” Nephrology Dialysis Transplantation, vol. 25, no. 9, pp. 3017–3025, 2010.
[13]  S. H. Han, S. C. Lee, E. W. Kang et al., “Reduced residual renal function is associated with endothelial dysfunction in patients receiving peritoneal dialysis,” Peritoneal Dialysis International, vol. 32, no. 2, pp. 149–158, 2012.
[14]  H. A. R. Hadi and J. A. Suwaidi, “Endothelial dysfunction in diabetes mellitus,” Vascular Health and Risk Management, vol. 3, no. 6, pp. 853–876, 2007.
[15]  G. Yang, R. Lucas, R. Caldwell, L. Yao, M. Romero, and R. Caldwell, “Novel mechanisms of endothelial dysfunction in diabetes,” Journal of Cardiovascular Disease Research, vol. 1, no. 2, pp. 59–63, 2010.
[16]  H. Liu, Y. Peng, F. Liu et al., “Correlation between endothelin-1 and atherosclerosis in chronic hemodialysis patients,” Journal of Nephrology, vol. 23, no. 5, pp. 593–602, 2010.
[17]  B. P. Oberg, E. McMenamin, F. L. Lucas et al., “Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease,” Kidney International, vol. 65, no. 3, pp. 1009–1016, 2004.
[18]  A. Khaira, S. Mahajan, A. Kumar et al., “Oxidative stress, endothelial function, carotid artery intimal thickness and their correlates among chronic peritoneal dialysis patients,” Indian Journal of Nephrology, vol. 21, no. 4, pp. 264–269, 2011.
[19]  A. S. Rodrigues, M. Almeida, I. Fonseca et al., “Peritoneal fast transport in incident peritoneal dialysis patients is not consistently associated with systemic inflammation,” Nephrology Dialysis Transplantation, vol. 21, no. 3, pp. 763–769, 2006.
[20]  A. Rodrigues, M. Martins, M. J. Santos et al., “Evaluation of effluent markers cancer antigen 125, vascular endothelial growth factor, and interleukin-6: relationship with peritoneal transport,” Advances in Peritoneal Dialysis, vol. 20, pp. 8–12, 2004.
[21]  J.-J. Mourad, B. Pannier, J. Blacher et al., “Creatinine clearance, pulse wave velocity, carotid compliance and essential hypertension,” Kidney International, vol. 59, no. 5, pp. 1834–1841, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133