Background and Objectives. To determine the most appropriate technique for tumour followup in experimental therapeutics, we compared ultrasound (US) and magnetic resonance imaging (MRI) to characterize ectopic and orthotopic colon carcinoma models. Methods. CT26 tumours were implanted subcutaneously (s.c.) in Balb/c mice for the ectopic model or into the caecum for the orthotopic model. Tumours were evaluated by histology, spectrofluorescence, MRI, and US. Results. Histology of CT26 tumour showed homogeneously dispersed cancer cells and blood vessels. The visualization of the vascular network using labelled albumin showed that CT26 tumours were highly vascularized and disorganized. MRI allowed high-resolution and accurate 3D tumour measurements and provided additional anatomical and functional information. Noninvasive US imaging allowed good delineation of tumours despite an hypoechogenic signal. Monitoring of tumour growth with US could be accomplished as early as 5 days after implantation with a shorter acquisition time (<5?min) compared to MRI. Conclusion. MRI and US afforded excellent noninvasive imaging techniques to accurately follow tumour growth of ectopic and orthotopic CT26 tumours. These two techniques can be appropriately used for tumour treatment followup, with a preference for US imaging, due to its short acquisition time and simplicity of use. 1. Introduction Colorectal cancer is the third leading cancer in the world in men and second in women with 1.2 million new cases identified in 2008. In terms of mortality, this cancer takes the second place after lung cancer with 608?700 deaths in 2008 [1]. It is therefore important to develop adapted models that could better represent the human pathology, in order to improve diagnostic methods or potential new therapies aimed at reducing the mortality rate of colon cancer. Murine colon tumour models can be obtained via in situ generation or via implantation of tumour fragments into appropriate syngeneic or immunosuppressed hosts. In situ models, including chemically induced, transgenic and spontaneous models, are considered less adapted for the evaluation of experimental therapies because of their inherent variability and the relatively long-time delay required for tumour growth and response to treatment [2]. While ectopic models are frequently employed owing to the ease of their implantation, orthotopic models are considered to better reflect the tumour physiological environment. In particular, significant differences between these models were found mainly in the level of growth factors and
References
[1]
A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[2]
P. McConville, W. L. Elliott, A. Kreger, et al., “Preclinical models of tumor growth and response,” in In Vivo Imaging of Cancer Therapy, A. F. Shields and P. Price, Eds., pp. 13–32, 2007.
[3]
M. W. Heijstek, O. Kranenburg, and I. H. M. B. Rinkes, “Mouse models of colorectal cancer and liver metastases,” Digestive Surgery, vol. 22, no. 1-2, pp. 16–25, 2005.
[4]
H. Kashtan, M. Rabau, J. B. M. Mullen et al., “Intra-rectal injection of tumour cells: a novel animal model of rectal cancer,” Surgical Oncology, vol. 1, no. 3, pp. 251–256, 1992.
[5]
R. Giavazzi, D. E. Campbell, J. M. Jessup, et al., “Metastatic behavior of tumor cells isolated from primary and metastatic human colorectal carcinomas implanted into different sites in nude mice,” Cancer Research, vol. 46, no. 4, pp. 1928–1933, 1986.
[6]
T. Kubota, “Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation,” Journal of Cellular Biochemistry, vol. 56, no. 1, pp. 4–8, 1994.
[7]
R. S. Bresalier, E. S. Hujanen, and S. E. Raper, “An animal model for colon cancer metastasis: establishment and characterization of murine cell lines with enhanced liver-metastasizing ability,” Cancer Research, vol. 47, no. 5, pp. 1398–1406, 1987.
[8]
M. Pocard, H. Tsukui, R.-J. Salmon, B. Dutrillaux, and M.-F. Poupon, “Efficiency of orthotopic xenograft models for human colon cancers,” In Vivo, vol. 10, no. 5, pp. 463–469, 1996.
[9]
J. Seguin, C. Nicolazzi, N. Mignet, et al., “Vascular density and endothelial cell expression of integrin alpha v beta 3 and E-selectin in murine tumours,” Tumor Biology, vol. 33, pp. 1709–1717, 2012.
[10]
S. K. Lyons, “Advances in imaging mouse tumour models in vivo,” Journal of Pathology, vol. 205, no. 2, pp. 194–205, 2005.
[11]
V. Koo, P. W. Hamilton, and K. Williamson, “Non-invasive in vivo imaging in small animal research,” Cellular Oncology, vol. 28, no. 4, pp. 127–139, 2006.
[12]
A. S?ling and N. G. Rainov, “Bioluminescence imaging in vivo—application to cancer research,” Expert Opinion on Biological Therapy, vol. 3, no. 7, pp. 1163–1172, 2003.
[13]
T. H. Corbett, D. P. Griswold Jr., and B. J. Roberts, “Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure,” Cancer Research, vol. 35, no. 9, pp. 2434–2439, 1975.
[14]
M. G. Brattain, J. Strobel-Stevens, D. Fine, et al., “Establishment of mouse colonic carcinoma cell lines with different metastatic properties,” Cancer Research, vol. 40, no. 7, pp. 2142–2146, 1980.
[15]
W. Tseng, X. Leong, and E. Engleman, “Orthotopic mouse model of colorectal cancer,” Journal of Visualized Experiments, no. 10, article e484, 2007.
[16]
T. Endo, M. Toda, M. Watanabe et al., “In situ cancer vaccination with a replication-conditional HSV for the treatment of liver metastasis of colon cancer,” Cancer Gene Therapy, vol. 9, no. 2, pp. 142–148, 2002.
[17]
X. Fu, J. M. Besterman, A. Monosov, and R. M. Hoffman, “Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 20, pp. 9345–9349, 1991.
[18]
B. M. Kraling, M. J. Razon, L. M. Boon, et al., “E-selectin is present in proliferating endothelial cells in human heman-giomas,” American Journal of Pathology, vol. 148, no. 4, pp. 1181–1191, 1996.
[19]
M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image processing with image J,” Biophotonics International, vol. 11, no. 7, pp. 36–42, 2004.
[20]
C. D. Thomas, C. Walczak, J. Kaffy, R. Pontikis, J. Jouanneau, and A. Volk, “Early effects of combretastatin A4 phosphate assessed by anatomic and carbogen-based functional magnetic resonance imaging on rat bladder tumors implanted in nude mice,” Neoplasia, vol. 8, no. 7, pp. 587–595, 2006.
[21]
M. Seshadri, R. Mazurchuk, J. A. Spernyak, A. Bhattacharya, Y. M. Rustum, and D. A. Bellnier, “Activity of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid against human head and neck carcinoma xenografts,” Neoplasia, vol. 8, no. 7, pp. 534–542, 2006.
[22]
M. Seshadri, D. A. Bellnier, and R. T. Cheney, “Assessment of the early effects of 5,6-dimethylxanthenone-4-acetic acid using macromolecular contrast media-enhanced magnetic resonance imaging: ectopic versus orthotopic tumors,” International Journal of Radiation Oncology Biology Physics, vol. 72, no. 4, pp. 1198–1207, 2008.
[23]
K. Turetschek, A. Preda, V. Novikov et al., “Tumor microvascular changes in antiangiogenic treatment: assessment by magnetic resonance contrast media of different molecular weights,” Journal of Magnetic Resonance Imaging, vol. 20, no. 1, pp. 138–144, 2004.
[24]
A. M. Y. Cheung, A. S. Brown, L. A. Hastie et al., “Three-dimensional ultrasound biomicroscopy for xenograft growth analysis,” Ultrasound in Medicine and Biology, vol. 31, no. 6, pp. 865–870, 2005.
[25]
J. Oh, S. Cha, A. H. Aiken et al., “Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema,” Journal of Magnetic Resonance Imaging, vol. 21, no. 6, pp. 701–708, 2005.
[26]
P. Gibbs, G. P. Liney, M. D. Pickles, B. Zelhof, G. Rodrigues, and L. W. Turnbull, “Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla,” Investigative Radiology, vol. 44, no. 9, pp. 572–576, 2009.
[27]
Y. Chen, K.-J. Chang, L.-H. Hwang, C.-N. Chen, and S.-H. Tseng, “Establishment and characterization of a rectal cancer model in mice: application to cytokine gene therapy,” International Journal of Colorectal Disease, vol. 17, no. 6, pp. 388–395, 2002.
[28]
J. Dong, J. Yang, Q. C. Ming et al., “A comparative study of gene vaccines encoding different extracellular domains of the vascular endothelial growth factor receptor 2 in the mouse model of colon adenocarcinoma CT-26,” Cancer Biology and Therapy, vol. 7, no. 4, pp. 502–509, 2008.
[29]
K. Kawano, Y. Hattori, H. Iwakura, et al., “Adrenal tumor volume in a genetically engineered mouse model of neuroblastoma determined bymagnetic resonance imaging,” Experimental and Therapeutic Medicine, vol. 4, no. 1, pp. 61–64, 2012.
[30]
M. E. Loveless and T. E. Yankeelov, “Dynamic contrast enhanced MRI: data acquisition and analysis,” in Quantitative MRI in Cancer-, T. E. Yankeelov, D. R. Pickens, and R. R. Price, Eds., pp. 143–162, 2011.
[31]
N. van Bruggen, J. Syha, A. L. Busza et al., “Identification of tumor hemorrhage in an animal model using spin echoes and gradient echoes,” Magnetic Resonance in Medicine, vol. 15, no. 1, pp. 121–127, 1990.
[32]
M. Seshadri, J. A. Spernyak, P. G. Maier, R. T. Cheney, R. Mazurchuk, and D. A. Bellnier, “Visualizing the acute effects of vascular-targeted therapy in vivo using intravital microscopy and magnetic resonance imaging: correlation with endothelial apoptosis, cytokine induction, and treatment outcome,” Neoplasia, vol. 9, no. 2, pp. 128–135, 2007.
[33]
L. Huwart, F. Peeters, R. Sinkus et al., “Liver fibrosis: non-invasive assessment with MR elastography,” NMR in Biomedicine, vol. 19, no. 2, pp. 173–179, 2006.
[34]
P. Garteiser, S. Doblas, J. L. Daire, et al., “MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation,” European Radiology, vol. 22, no. 10, pp. 2169–2177, 2012.
[35]
L. Juge, B. T. Doan, J. Seguin, et al., “Colon tumor growthand antivascular treatment inmice: complementary assessmentwith MR elastography and diffusion-weighted MR imaging,” Radiology, vol. 264, no. 2, pp. 436–444, 2012.
[36]
R. K. Jain, “Determinants of tumor blood flow: a review,” Cancer Research, vol. 48, no. 10, pp. 2641–2658, 1988.
[37]
D. E. Goertz, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster, “High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow,” Cancer Research, vol. 62, no. 22, pp. 6371–6375, 2002.
[38]
E. Macé, G. Montaldo, I. Cohen, M. Baulac, M. Fink, and M. Tanter, “Functional ultrasound imaging of the brain,” Nature Methods, vol. 8, no. 8, pp. 662–664, 2011.
[39]
W. A. Berg, D. O. Cosgrove, C. J. Doré et al., “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology, vol. 262, no. 2, pp. 435–449, 2012.
[40]
D. O. Cosgrove, W. A. Berg, C. J. Dore, et al., “Shear wave elastography for breast masses is highly reproducible,” European Radiology, vol. 22, no. 5, pp. 1023–1032, 2012.