全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cholinergic Depletion in Alzheimer’s Disease Shown by [18F]FEOBV Autoradiography

DOI: 10.1155/2013/205045

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rationale. Alzheimer’s Disease (AD) is a neurodegenerative condition characterized in part by deficits in cholinergic basalocortical and septohippocampal pathways. [18F]Fluoroethoxybenzovesamicol ([18F]FEOBV), a Positron Emission Tomography ligand for the vesicular acetylcholine transporter (VAChT), is a potential molecular agent to investigate brain diseases associated with presynaptic cholinergic losses. Purpose. To demonstrate this potential, we carried out an [18F]FEOBV autoradiography study to compare postmortem brain tissues from AD patients to those of age-matched controls. Methods. [18F]FEOBV autoradiography binding, defined as the ratio between regional grey and white matter, was estimated in the hippocampus (13 controls, 8 AD) and prefrontal cortex (13 controls, 11 AD). Results. [18F]FEOBV binding was decreased by 33% in prefrontal cortex, 25% in CA3, and 20% in CA1. No changes were detected in the dentate gyrus of the hippocampus, possibly because of sprouting or upregulation toward the resilient glutamatergic neurons of the dentate gyrus. Conclusion. This is the first demonstration of [18F]FEOBV focal binding changes in cholinergic projections to the cortex and hippocampus in AD. Such cholinergic synaptic (and more specifically VAChT) alterations, in line with the selective basalocortical and septohippocampal cholinergic losses documented in AD, indicate that [18F]FEOBV is indeed a promising ligand to explore cholinergic abnormalities in vivo. 1. Introduction Alzheimer’s Disease (AD) is the most prevalent neurodegenerative condition in individuals over 65 [1]. AD neuropathology is characterized by progressive accumulation of amyloid beta peptide (brain amyloidosis), intraneuronal inclusion of hyperphosphorylated tau (neurofibrillary tangles), and degeneration of various neuronal populations. Depletion of cholinergic cell bodies located in the basal forebrain constitutes one of the earliest findings observed in postmortem AD brains [2]. This forebrain neurodegeneration depletes cholinergic projections in virtually the entire prosencephalon. Specifically, degeneration of the Nucleus Basalis of Meynert as well as the medial septum severely perturbs cholinergic neurotransmission at the level of the cortex and hippocampus, respectively [3]. In contrast, cholinergic neurotransmission remains mostly unaffected in other brain regions such as the basal ganglia, thalamus, brainstem, and cerebellum. Quantification of presynaptic terminals provides significant information regarding numerous biochemical processes related to cholinergic neurotransmission.

References

[1]  L. E. Hebert, P. A. Scherr, J. L. Bienias, D. A. Bennett, and D. A. Evans, “Alzheimer disease in the US population: prevalence estimates using the 2000 census,” Archives of Neurology, vol. 60, no. 8, pp. 1119–1122, 2003.
[2]  P. J. Whitehouse, D. L. Price, R. G. Struble, A. W. Clark, J. T. Coyle, and M. R. Delon, “Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain,” Science, vol. 215, no. 4537, pp. 1237–1239, 1982.
[3]  J. T. Coyle, D. L. Price, and M. R. DeLong, “Alzheimer's disease: a disorder of cortical cholinergic innervation,” Science, vol. 219, no. 4589, pp. 1184–1190, 1983.
[4]  S. M. Efange, “In vivo imaging of the vesicular acetylcholine transporter and the vesicular monoamine transporter,” The FASEB Journal, vol. 14, no. 15, pp. 2401–2413, 2000.
[5]  G. N. Nikolajsen, M. S. Jensen, and M. J. West, “Cholinergic axon length reduced by 300 meters in the brain of an Alzheimer mouse model,” Neurobiology of Aging, vol. 32, no. 11, pp. 1927–1931, 2011.
[6]  J. Hartmann, C. Erb, U. Ebert et al., “Central cholinergic functions in human amyloid precursor protein knock-in/presenilin-1 transgenic mice,” Neuroscience, vol. 125, no. 4, pp. 1009–1017, 2004.
[7]  C. Prior, I. G. Marshall, and S. M. Parsons, “The pharmacology of vesamicol: an inhibitor of the vesicular acetylcholine transporter,” General Pharmacology, vol. 23, no. 6, pp. 1017–1022, 1992.
[8]  S. T. Dekosky, M. D. Ikonomovic, S. D. Styren et al., “Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment,” Annals of Neurology, vol. 51, no. 2, pp. 145–155, 2002.
[9]  K. Kendziorra, H. Wolf, P. M. Meyer et al., “Decreased cerebral α4β2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 3, pp. 515–525, 2011.
[10]  H. Shinotoh, H. Namba, K. Fukushi, et al., “Progressive loss of cortical acetylcholinesterase activity in association with cognitive decline in Alzheimer's disease: a positron emission tomography study,” Annals of Neurology, vol. 48, no. 2, pp. 194–200, 2000.
[11]  S. M. Parsons, B. A. Bahr, G. A. Rogers, E. D. Clarkson, K. Noremberg, and B. W. Hicks, “Acetylcholine transporter—vesamicol receptor pharmacology and structure,” Progress in Brain Research, vol. 98, pp. 175–181, 1993.
[12]  G. K. Mulholland, D. M. Wieland, M. R. Kilbourn, et al., “[18F]fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses,” Synapse, vol. 30, no. 3, pp. 263–274, 1998.
[13]  M. R. Kilbourn, B. Hockley, L. Lee et al., “Positron emission tomography imaging of (2R,3R)-5-[18F]fluoroethoxybenzovesamicol in rat and monkey brain: a radioligand for the vesicular acetylcholine transporter,” Nuclear Medicine and Biology, vol. 36, no. 5, pp. 489–493, 2009.
[14]  M. Parent, M. A. Bedard, A. Aliaga, et al., “PET imaging of cholinergic deficits in rats using [18F]fluoroethoxybenzovesamicol ([18F]FEOBV),” Neuroimage, vol. 62, no. 1, pp. 555–561, 2012.
[15]  M. Ruberg, W. Mayo, A. Brice et al., “Choline acetyltransferase activity and [3H]vesamicol binding in the temporal cortex of patients with Alzheimer's disease, Parkinson's disease, and rats with basal forebrain lesions,” Neuroscience, vol. 35, no. 2, pp. 327–333, 1990.
[16]  S. J. Kish, L. M. Distefano, S. Dozic et al., “[3H]Vesamicol binding in human brain cholinergic deficiency disorders,” Neuroscience Letters, vol. 117, no. 3, pp. 347–352, 1990.
[17]  G. K. Mulholland, D. M. Wieland, M. R. Kilbourn, D. E. Kuhl, and Y.-W. Jung, “Synthesis of [18F]fluoroethoxy-benzovesamicol, a radiotracer for cholinergic neurons,” Journal of Labelled Compounds and Radiopharmaceuticals, vol. 33, no. 7, pp. 583–591, 1993.
[18]  S. Mzengeza, G. Massarweh, P. Rosa Neto, J.-P. Soucy, and M. A. Bedard, “Radiosynthesis of [18F]FEOV and in vivo PET imaging of acetylcholine vesicular transporter in the rat,” Journal of Cerebral Blood Flow & Metabolism, vol. 27, supplement 1, pp. 10U–17U, 2007.
[19]  H. Kluver and E. Barrera, “A method for the combined staining of cells and fibers in the nervous system,” Journal of Neuropathology & Experimental Neurology, vol. 12, no. 4, pp. 400–403, 1953.
[20]  M. Jahan, S. Nag, R. Krasikova et al., “Fluorine-18 labeling of three novel d-peptides by conjugation with N-succinimidyl-4-[18F]fluorobenzoate and preliminary examination by postmortem whole-hemisphere human brain autoradiography,” Nuclear Medicine and Biology, vol. 39, no. 3, pp. 315–323, 2012.
[21]  M. L. Gilmor, N. R. Nash, A. Roghani et al., “Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles,” Journal of Neuroscience, vol. 16, no. 7, pp. 2179–2190, 1996.
[22]  U. Arvidsson, M. Riedl, R. Elde, and B. Meister, “Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems,” Journal of Comparative Neurology, vol. 378, no. 4, pp. 454–467, 1997.
[23]  T. Gómez-Isla, J. L. Price, D. W. McKeel Jr., J. C. Morris, J. H. Growdon, and B. T. Hyman, “Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease,” Journal of Neuroscience, vol. 16, no. 14, pp. 4491–4500, 1996.
[24]  H. Varoqui and J. D. Erickson, “Active transport of acetylcholine by the human vesicular acetylcholine transporter,” Journal of Biological Chemistry, vol. 271, no. 44, pp. 27229–27232, 1996.
[25]  J. K. Staley, D. C. Mash, S. M. Parsons, A. B. Khare, and S. M. Efange, “Pharmacological characterization of the vesamicol analogue (+)-[125I]MIBT in primate brain,” European Journal of Pharmacology, vol. 338, no. 2, pp. 159–169, 1997.
[26]  K. H. Chen, E. A. Reese, H. W. Kim, S. I. Rapoport, and J. S. Rao, “Disturbed neurotransmitter transporter expression in Alzheimer's disease brain,” Journal of Alzheimer's Disease, vol. 26, no. 4, pp. 755–766, 2011.
[27]  L. Descarries and N. Mechawar, “Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system,” Progress in Brain Research, vol. 125, pp. 27–47, 2000.
[28]  R. A. Koeppe, M. Petrou, P. Scott, N. Bohnen, M. R. Kilbourn, and K. A. Frey, “Kinetic analysis of [18F]FEOBV, a PET radiotracer for imaging the vesicular acetylcholine transporter,” Journal of Cerebral Blood Flow & Metabolism, vol. 32, supplemnet 1, p. S181, 2012.
[29]  M. J. West, C. H. Kawas, W. F. Stewart, G. L. Rudow, and J. C. Troncoso, “Hippocampal neurons in pre-clinical Alzheimer's disease,” Neurobiology of Aging, vol. 25, no. 9, pp. 1205–1212, 2004.
[30]  M. D. Ikonomovic, E. J. Mufson, J. Wuu, E. J. Cochran, D. A. Bennett, and S. T. DeKosky, “Cholinergic plasticity in hippocampus of individuals with mild cognitive impairment: correlation with Alzheimer's neuropathology,” Journal of Alzheimer's Disease, vol. 5, no. 1, pp. 39–48, 2003.
[31]  B. Stanfield and W. M. Cowan, “Evidence for the sprouting of entorhinal afferents into the “hippocampal zone” of the molecular layer of the dentate gyrus,” Anatomy and Embryology, vol. 156, no. 1, pp. 37–52, 1979.
[32]  E. J. Mufson, M. Bothwell, L. B. Hersh, and J. H. Kordower, “Nerve growth factor receptor immunoreactive profiles in the normal, aged human basal forebrain: colocalization with cholinergic neurons,” Journal of Comparative Neurology, vol. 285, no. 2, pp. 196–217, 1989.
[33]  E. J. Mufson, S. D. Ginsberg, M. D. Ikonomovic, and S. T. DeKosky, “Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction,” Journal of Chemical Neuroanatomy, vol. 26, no. 4, pp. 233–242, 2003.
[34]  G. Fuhrmann, T. Durkin, G. Thiriet, E. Kempf, and A. Ebel, “Cholinergic neurotransmission in the central nervous system of the Snell dwarf mouse,” Journal of Neuroscience Research, vol. 13, no. 3, pp. 417–430, 1985.
[35]  D. E. Kuhl, S. Minoshima, J. A. Fessler et al., “In vivo mapping of cholinergic terminals in normal aging, Alzheimer's disease, and Parkinson's disease,” Annals of Neurology, vol. 40, no. 3, pp. 399–410, 1996.
[36]  R. A. Sperling, P. S. Aisen, L. A. Beckett et al., “Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 280–292, 2011.
[37]  I. Prohovnik, D. P. Perl, K. L. Davis, L. Libow, G. Lesser, and V. Haroutunian, “Dissociation of neuropathology from severity of dementia in late-onset Alzheimer disease,” Neurology, vol. 66, no. 1, pp. 49–55, 2006.
[38]  P. Dournaud, P. Deleare, J. J. Hauw, and J. Epelbaum, “Differential correlation between neurochemical deficits, neuropathology, and cognitive status in Alzheimer's disease,” Neurobiology of Aging, vol. 16, no. 5, pp. 817–823, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133