全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Region-Based Partial Volume Correction Techniques for PET Imaging: Sinogram Implementation and Robustness

DOI: 10.1155/2013/435959

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background/Purpose. Limited spatial resolution of positron emission tomography (PET) requires partial volume correction (PVC). Region-based PVC methods are based on geometric transfer matrix implemented either in image-space (GTM) or sinogram-space (GTMo), both with similar performance. Although GTMo is slower, it more closely simulates the 3D PET image acquisition, accounts for local variations of point spread function, and can be implemented for iterative reconstructions. A recent image-based symmetric GTM (sGTM) has shown improvement in noise characteristics and robustness to misregistration over GTM. This study implements the sGTM method in sinogram space (sGTMo), validates it, and evaluates its performance. Methods. Two 3D sphere and brain digital phantoms and a physical sphere phantom were used. All four region-based PVC methods (GTM, GTMo, sGTM, and sGTMo) were implemented and their performance was evaluated. Results. All four PVC methods had similar accuracies. Both noise propagation and robustness of the sGTMo method were similar to those of sGTM method while they were better than those of GTMo method especially for smaller objects. Conclusion. The sGTMo was implemented and validated. The performance of the sGTMo in terms of noise characteristics and robustness to misregistration is similar to that of the sGTM method and improved compared to the GTMo method. 1. Introduction In spite of continuous improvement in the instrumentation of positron emission tomography (PET), its spatial resolution still remains relatively low compared to anatomical imaging modalities such as magnetic resonance (MR) or computed tomography (CT). Failure to implement a partial volume correction (PVC) in quantitative PET imaging may result in significant bias in the estimate of regional radioactivity uptake [1–3]. The limited spatial resolution of PET is due to several factors that influence the image formation processes, including positron range, noncollinearity, detector width, and reconstruction filtering [4]. Two distinct effects are usually associated with the partial volume effect [5]. The first is the point response effect, which causes spillover between different regions. This effect can be accounted for with a knowledge of the three-dimensional (3D) PET image formation processes or a measurement of the global PET point spread function (PSF). Usually, a fitted 3D Gaussian curve characterized by its full width half maximums (FWHMs) in the , , and directions is used to estimate the global PET PSF. The second effect is the tissue fraction effect due to the coarse

References

[1]  F. Fazio and D. Perani, “Importance of partial-volume correction in brain PET studies,” Journal of Nuclear Medicine, vol. 41, no. 11, pp. 1849–1850, 2000.
[2]  C. C. Meltzer, P. E. Kinahan, P. J. Greer et al., “Comparative evaluation of MR-based partial-volume correction schemes for PET,” Journal of Nuclear Medicine, vol. 40, no. 12, pp. 2053–2065, 1999.
[3]  F. Yokoi, O. G. Rousset, A. S. Dogan et al., “Impact of partial volume correction on kinetic parameters: preliminary experience in patient studies,” in Quantitative Functional Brain Imaging With Positron Emission Tomography, R. E. Carson, Ed., Academic Press, San Diego, Calif, USA, 1998.
[4]  W. Moses and S. Derenzo, “Empirical observation of resolution degradation in positron emission tomographs utilizing block detectors,” Journal of Nuclear Medicine, vol. 34, p. 101, 1993.
[5]  M. Soret, S. L. Bacharach, and I. Buvat, “Partial-volume effect in PET tumor imaging,” Journal of Nuclear Medicine, vol. 48, no. 6, pp. 932–945, 2007.
[6]  A. S. Kirov, J. Z. Piao, and C. R. Schmidtlein, “Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology,” Physics in Medicine and Biology, vol. 53, no. 10, pp. 2577–2591, 2008.
[7]  B.-K. Teo, Y. Seo, S. L. Bacharach et al., “Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data,” Journal of Nuclear Medicine, vol. 48, no. 5, pp. 802–810, 2007.
[8]  D. L. Barbee, R. T. Flynn, J. E. Holden, R. J. Nickles, and R. Jeraj, “A method for partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function,” Physics in Medicine and Biology, vol. 55, no. 1, pp. 221–236, 2010.
[9]  P. Gantet, P. Payoux, A. Celler et al., “Iterative three-dimensional expectation maximization restoration of single photon emission computed tomography images: application in striatal imaging,” Medical Physics, vol. 33, no. 1, pp. 52–60, 2006.
[10]  H. Wang and B. Fei, “An MR image-guided, voxel-based partial volume correction method for PET images,” Medical Physics, vol. 39, no. 1, pp. 179–194, 2012.
[11]  M. Shidahara, C. Tsoumpas, A. Hammers et al., “Functional and structural synergy for resolution recovery and partial volume correction in brain PET,” NeuroImage, vol. 44, no. 2, pp. 340–348, 2009.
[12]  N. Boussion, M. Hatt, F. Lamare et al., “A multiresolution image based approach for correction of partial volume effects in emission tomography,” Physics in Medicine and Biology, vol. 51, no. 7, pp. 1857–1876, 2006.
[13]  O. G. Rousset, Y. Ma, and A. C. Evans, “Correction for partial volume effects in PET: principle and validation,” Journal of Nuclear Medicine, vol. 39, no. 5, pp. 904–911, 1998.
[14]  M. Quarantelli, K. Berkouk, A. Prinster et al., “Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction,” Journal of Nuclear Medicine, vol. 45, no. 2, pp. 192–201, 2004.
[15]  J. Tohka and A. Reilhac, “Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method,” NeuroImage, vol. 39, no. 4, pp. 1570–1584, 2008.
[16]  S. Southekal, S. J. McQuaid, M. F. Kijewski, and S. C. Moore, “Evaluation of a method for projection-based tissue-activity estimation within small volumes of interest,” Physics in Medicine and Biology, vol. 57, no. 3, pp. 685–701, 2012.
[17]  Y. Du, B. M. W. Tsui, and E. C. Frey, “Partial volume effect compensation for quantitative brain SPECT imaging,” IEEE Transactions on Medical Imaging, vol. 24, no. 8, pp. 969–976, 2005.
[18]  Y. Ma and A. C. Evans, “Analytical modeling of pet imaging with correlated functional and structural images,” IEEE Transactions on Nuclear Science, vol. 44, no. 6, pp. 2439–2444, 1997.
[19]  H. Uchida, T. W. Chow, D. C. Mamo et al., “Effects of aging on 5-HT2AR binding: a HRRT PET study with and without partial volume corrections,” International Journal of Geriatric Psychiatry, vol. 26, no. 12, pp. 1300–1308, 2011.
[20]  W. Lehnert, M.-C. Gregoire, A. Reilhac, and S. R. Meikle, “Characterisation of partial volume effect and region-based correction in small animal positron emission tomography (PET) of the rat brain,” NeuroImage, vol. 60, no. 4, pp. 2144–2157, 2012.
[21]  A. Hahn, L. Nics, P. Baldinger et al., “Combining image-derived and venous input functions enables quantification of serotonin-1A receptors with [carbonyl-11C]WAY-100635 independent of arterial sampling,” Neuroimage, vol. 62, pp. 199–206, 2012.
[22]  B. Sattler, T. Jochimsen, H. Barthel et al., “Physical and organizational provision for installation, regulatory requirements and implementation of a simultaneous hybrid PET/MR-imaging system in an integrated research and clinical setting,” MAGMA, vol. 26, pp. 159–171, 2013.
[23]  V. Frouin, C. Comtat, A. Reilhac, and M.-C. Grégoire, “Correction of partial-volume effect for PET striatal imaging: fast implementation and study of robustness,” Journal of Nuclear Medicine, vol. 43, no. 12, pp. 1715–1726, 2002.
[24]  O. G. Rousset, D. L. Collins, A. Rahmim, and D. F. Wong, “Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum,” Journal of Nuclear Medicine, vol. 49, no. 7, pp. 1097–1106, 2008.
[25]  M. Sattarivand, M. Kusano, I. Poon, and C. Caldwell, “Symmetric geometric transfer matrix partial volume correction for PET imaging: principle, validation, and robustness,” Physics in Medicine and Biology, vol. 57, pp. 7101–7116, 2012.
[26]  I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, “Computerized three-dimensional segmented human anatomy,” Medical Physics, vol. 21, no. 2, pp. 299–302, 1994.
[27]  S. R. Cherry, J. A. Sorenson, and M. E. Phelps, Physics in Nuclear Medicine, Elsevier Saunders, Philadelphia, Pa, USA, 2003.
[28]  K. Thielemans, C. Tsoumpas, S. Mustafovic et al., “STIR: software for tomographic image reconstruction release 2,” Physics in Medicine and Biology, vol. 57, no. 4, pp. 867–883, 2012.
[29]  A. Todd-Pokropek, T. D. Cradduck, and F. Deconinck, “A file format for the exchange of nuclear medicine image data: a specification of Interfile version 3.3,” Nuclear Medicine Communications, vol. 13, no. 9, pp. 673–699, 1992.
[30]  P. E. Kinahan and J. G. Rogers, “Analytic 3D image reconstruction using all detected events,” IEEE Transactions on Nuclear Science, vol. 36, no. 1, pp. 964–968, 1989.
[31]  U. Tuna, S. Peltonen, and U. Ruotsalainen, “Interpolation for the gap-filling of the HRRT PET sinograms by using the slices in the direction of the radial samples,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record (NSS/MIC '09), pp. 3273–3279, October 2009.
[32]  C. C. Watson, “New, faster, image-based scatter correction for 3D PET,” IEEE Transactions on Nuclear Science, vol. 47, no. 4, pp. 1587–1594, 2000.
[33]  S. Pajevic, M. E. Daube-Witherspoon, S. L. Bacharach, and R. E. Carson, “Noise characteristics of 3-d and 2-d pet images,” IEEE Transactions on Medical Imaging, vol. 17, no. 1, pp. 9–23, 1998.
[34]  R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York, NY, USA, 2000.
[35]  M. E. Phelps, PET: Physics, Instrumentation, and Scanners, Springer, New York, NY, USA, 2006.
[36]  A. M. Alessio and P. E. Kinahan, “Improved quantitation for PET/CT image reconstruction with system modeling and anatomical priors,” Medical Physics, vol. 33, no. 11, pp. 4095–4103, 2006.
[37]  E. J. Hoffman, S. C. Huang, D. Plummer, and M. E. Phelps, “Quantitation in positron emission computed tomography: 6. Effect of nonuniform resolution,” Journal of Computer Assisted Tomography, vol. 6, no. 5, pp. 987–999, 1982.
[38]  J. Qi and R. M. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Physics in Medicine and Biology, vol. 51, pp. R541–R578, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133