全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Rationale for the Use of F18-FDG PET/CT in Fever and Inflammation of Unknown Origin

DOI: 10.1155/2012/165080

Full-Text   Cite this paper   Add to My Lib

Abstract:

This review focuses on the diagnostic value of hybrid F18-FDG Positron Emission Tomography/Computerized tomography (PET/CT) in fever of unknown origin (FUO) and inflammation of unknown origin (IUO). Due to the wide range of possible causes both FUO and IUO remain a clinical challenge for both patients and physicians. In addition, the aetiology of IUO shows the same variation in diseases as the FUO spectrum and probably requires the same diagnostic approach as FUO. There are numerous historically used diagnostic approaches incorporating invasive and non-invasive, and imaging techniques, all with relative high specificity but limited sensitivity. This hampers the generalization of these diagnostic approaches. However, recently published reports show that F18-FDG PET/CT in FUO and IUO has a high sensitivity and a relative non-specificity for malignancy, infection and inflammation. This makes F18-FDG PET/CT an ideal diagnostic tool to start the diagnostic process and to guide subsequent focused diagnostic approaches with higher specificity. In addition, F18-FDG PET/CT has a relative high negative predictive value. Therefore F18 FDG PET/CT should be incorporated in the routine diagnostic work-up of patients with FUO and IUO, preferably at an early stage in the diagnostic process. 1. Introduction 1.1. Definition of Fever of Unknown Origin Fever of unknown origin (FUO) was first used by Kiefer and Leard in their book “prolonged and perplexing fevers”. In their seminal article from 1961 Petersdorf and Beeson defined (FUO) as: (1) an illness of at least 3 weeks’ duration, (2) with fever; body temperature higher than 38.3°C (101°F) on several occasions, and (3) no established diagnosis after 1 week of hospital investigation [1]. A period of 3 weeks was chosen to eliminate self-limited viral illnesses and to allow sufficient time to complete the appropriate diagnostic procedures. Since 1961 health care has shifted from inpatient oriented healthcare to a more outpatient setting, and in response to the increasing sophistication of medical technology, Durack and Street proposed a change towards the required duration of investigation before qualifying a fever as FUO; at least 3 days in hospital or at least three outpatient visits [2]. 1.2. Aetiology of FUO Although the definition of FUO suggests that the fevers remain of unknown origin, most of the FUOs have a pathophysiological basis. Based on these pathophysiological disorders, the spectrum of FUOs may be divided into four general categories: (1) infections, (2) malignancies, (3) noninfectious inflammatory diseases,

References

[1]  R. G. Petersdorf and P. B. Beeson, “Fever of unexplained origin: report on 100 cases,” Medicine, vol. 40, pp. 1–30, 1961.
[2]  D. T. Durack and A. C. Street, “Fever of unknown origin—reexamined and redefined,” Current Clinical Topics in Infectious Diseases, vol. 11, pp. 35–51, 1991.
[3]  O. Mourad, V. Palda, and A. S. Detsky, “A comprehensive evidence-based approach to fever of unknown origin,” Archives of Internal Medicine, vol. 163, no. 5, pp. 545–551, 2003.
[4]  S. Vanderschueren, D. Knockaert, T. Adriaenssens et al., “From prolonged febrile illness to fever of unknown origin: the challenge continues,” Archives of Internal Medicine, vol. 163, no. 9, pp. 1033–1041, 2003.
[5]  D. C. Knockaert, S. Vanderschueren, and D. Blockmans, “Fever of unknown origin in adults: 40 years on,” Journal of Internal Medicine, vol. 253, no. 3, pp. 263–275, 2003.
[6]  P. M. Arnow and J. P. Flaherty, “Fever of unknown origin,” The Lancet, vol. 350, no. 9077, pp. 575–580, 1997.
[7]  J. V. Hirschmann, “Fever of unknown origin in adults,” Clinical Infectious Diseases, vol. 24, no. 3, pp. 291–302, 1997.
[8]  C. P. Bleeker-Rovers, F. J. Vos, A. H. Mudde et al., “A prospective multi-centre study of the value of FDG-PET as part of a structured diagnostic protocol in patients with fever of unknown origin,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 5, pp. 694–703, 2007.
[9]  G. B. Gaeta, F. M. Fusco, and S. Nardiello, “Fever of unknown origin: a systematic review of the literature for 1995–2004,” Nuclear Medicine Communications, vol. 27, no. 3, pp. 205–211, 2006.
[10]  C. P. Bleeker-Rovers, F. J. Vos, E. M. H. A. De Kleijn et al., “A prospective multicenter study on fever of unknown origin: the yield of a structured diagnostic protocol,” Medicine, vol. 86, no. 1, pp. 26–38, 2007.
[11]  A. E. Perrin, B. Goichot, E. Andrès et al., “Unexplained prolonged inflammatory syndromes: long-term follow-up and prognosis,” Revue de Medecine Interne, vol. 23, no. 8, pp. 683–689, 2002.
[12]  M. Affronti, P. Mansueto, M. Soresi et al., “Low-grade fever: how to distinguish organic from non-organic forms,” International Journal of Clinical Practice, vol. 64, no. 3, pp. 316–321, 2010.
[13]  S. Vanderschueren, E. Del Biondo, D. Ruttens, I. V. Boxelaer, E. Wauters, and D. D. C. Knockaert, “Inflammation of unknown origin versus fever of unknown origin: two of a kind,” European Journal of Internal Medicine, vol. 20, no. 4, pp. 415–418, 2009.
[14]  P. Konecny and R. N. Davidson, “Pyrexia of unknown origin in the 1990s: time to redefine,” British Journal of Hospital Medicine, vol. 56, no. 1, pp. 21–24, 1996.
[15]  G. A. Jacoby and M. N. Swartz, “Fever of undetermined origin,” The New England Journal of Medicine, vol. 289, no. 26, pp. 1407–1410, 1973.
[16]  A. L. Esposito and R. A. Gleckman, “A diagnostic approach to the adult with fever of unknown origin,” Archives of Internal Medicine, vol. 139, no. 5, pp. 575–579, 1979.
[17]  J. L. Brusch and L. Weinstein, “Fever of unknown origin,” Medical Clinics of North America, vol. 72, no. 5, pp. 1247–1261, 1988.
[18]  P. A. Pizzo, F. H. Lovejoy, and D. H. Smith, “Prolonged fever in children: review of 100 cases,” Pediatrics, vol. 55, no. 4, pp. 468–473, 1975.
[19]  R. P. Sheon and R. A. Van Ommen, “Fever of obscure origin. Diagnosis and treatment based on a series of sixty cases,” The American Journal of Medicine, vol. 34, no. 4, pp. 486–499, 1963.
[20]  B. A. Cunha, “The clinical significance of fever patterns,” Infectious Disease Clinics of North America, vol. 10, no. 1, pp. 33–44, 1996.
[21]  E. B. Larson, H. J. Featherstone, and R. G. Petersdorf, “Fever of undetermined origin: diagnosis and follow-up of 105 cases, 1970–1980,” Medicine, vol. 61, no. 5, pp. 269–293, 1982.
[22]  A. F. AbuRahma, S. Saiedy, P. A. Robinson, J. P. Boland, D. J. Cottrell, and C. Stuart, “Role of venous duplex imaging of the lower extremities in patients with fever of unknown origin,” Surgery, vol. 121, no. 4, pp. 366–371, 1997.
[23]  Y. Iikuni, J. Okada, H. Kondo, and S. Kashiwazaki, “Current fever of unknown origin 1982–1992,” Internal Medicine, vol. 33, no. 2, pp. 67–73, 1994.
[24]  E. M. H. A. de Kleijn, H. J. J. van Lier, and J. W. M. van der Meer, “Fever of unknown origin (FUO): II. Diagnostic procedures in a prospective multicenter study of 167 patients,” Medicine, vol. 76, no. 6, pp. 401–414, 1997.
[25]  T. Holtz, R. H. Moseley, and J. M. Scheiman, “Liver biopsy in fever of unknown origin: a reappraisal,” Journal of Clinical Gastroenterology, vol. 17, no. 1, pp. 29–32, 1993.
[26]  M. A. García-Ordó?ez, J. D. Colmenero, F. Jiménez-O?ate, F. Martos, J. Martínez, and C. Juárez, “Diagnostic usefulness of percutaneous liver biopsy in HIV-infected patients with fever of unknown origin,” Journal of Infection, vol. 38, no. 2, pp. 94–98, 1999.
[27]  P. J. Dahlberg, J. M. Lockhart, and E. L. Overholt, “Diagnostic studies for systemic necrotizing vasculitis. Sensitivity, specificity, and predictive value in patients with multisystem disease,” Archives of Internal Medicine, vol. 149, no. 1, pp. 161–165, 1989.
[28]  A. J. Morgan and R. A. Schwartz, “Cutaneous polyarteritis nodosa: a comprehensive review,” International Journal of Dermatology, vol. 49, no. 7, pp. 750–756, 2010.
[29]  R. S. Vasan, G. Choudhuri, and R. K. Tandon, “Muscle biopsy in the evaluation of pyrexia of unknown origin (PUO),” The Journal of the Association of Physicians of India, vol. 34, no. 9, pp. 659–660, 1986.
[30]  B. Dasgupta and Giant Cell Arteritis Guideline Development Group, “Concise guidance: diagnosis and management of giant cell arteritis,” Clinical Medicine, vol. 10, no. 4, pp. 381–386, 2010.
[31]  D. C. Knockaert, L. J. Vanneste, S. B. Vanneste, and H. J. Bobbaers, “Fever of unknown origin in the 1980s: an update of the diagnostic spectrum,” Archives of Internal Medicine, vol. 152, no. 1, pp. 51–55, 1992.
[32]  G. A. Hooisma, H. Balink, P. M. Houtman, R. H. Slart, and K. D. Lensen, “Parameters related to a positive test result for FDG PET(/CT) for large vessel vasculitis: a multicenter retrospective study,” Clinical Rheumatology, vol. 31, no. 5, pp. 861–871, 2012.
[33]  B. D. Clark, P. R. Vezza, C. Copeland, A. M. Wilder, and A. Abati, “Diagnostic sensitivity of bronchoalveolar lavage versus lung fine needle aspirate,” Modern Pathology, vol. 15, no. 12, pp. 1259–1265, 2002.
[34]  P. Palange, S. Carlone, M. Venditti et al., “Alveolar cell population in HIV infected patients,” European Respiratory Journal, vol. 4, no. 6, pp. 639–642, 1991.
[35]  A. H. Elgazzar, H. M. Abdel-Dayem, J. D. Clark, and H. R. Maxon, “Multimodality imaging of osteomyelitis,” European Journal of Nuclear Medicine, vol. 22, no. 9, pp. 1043–1063, 1995.
[36]  J. F. Sedgwick and D. J. Burstow, “Update on echocardiography in the management of infective endocarditis,” Current Infectious Disease Reports, vol. 14, no. 4, pp. 373–380, 2012.
[37]  M. Gotthardt, C. P. Bleeker-Rovers, O. C. Boerman, and W. J. G. Oyen, “Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques,” Journal of Nuclear Medicine, vol. 51, no. 12, pp. 1937–1949, 2010.
[38]  F. Wendel, M. Jenett, A. Geib, D. Hahn, and J. Sandstede, “Low-dose multislice CT in febrile neutropenic patients,” RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren, vol. 177, no. 10, pp. 1424–1429, 2005.
[39]  R. Eibel, P. Herzog, O. Dietrich et al., “Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT,” Radiology, vol. 241, no. 3, pp. 880–891, 2006.
[40]  G. Mariani, L. Bruselli, T. Kuwert et al., “A review on the clinical uses of SPECT/CT,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 10, pp. 1959–1985, 2010.
[41]  C. P. Bleeker-Rovers, O. C. Boerman, H. J. J. M. Rennen, F. H. M. Corstens, and W. J. G. Oyen, “Radiolabeled compounds in diagnosis of infectious and inflammatory disease,” Current Pharmaceutical Design, vol. 10, no. 24, pp. 2935–2950, 2004.
[42]  R. Kumar, S. Basu, D. Torigian, V. Anand, H. Zhuang, and A. Alavi, “Role of modern imaging techniques for diagnosis of infection in the era of 18F-fluorodeoxyglucose positron emission tomography,” Clinical Microbiology Reviews, vol. 21, no. 1, pp. 209–224, 2008.
[43]  C. J. Palestro, “The current role of gallium imaging in infection,” Seminars in Nuclear Medicine, vol. 24, no. 2, pp. 128–141, 1994.
[44]  D. C. Knockaert, L. A. Mortelmans, M. C. De Roo, and H. J. Bobbaers, “Clinical value of gallium-67 scintigraphy in evaluation of fever of unknown origin,” Clinical Infectious Diseases, vol. 18, no. 4, pp. 601–605, 1994.
[45]  P. J. Perkins, “Early Gallium-67 abdominal imaging: pitfalls due to bowel activity,” American Journal of Roentgenology, vol. 136, no. 5, pp. 1016–1017, 1981.
[46]  C. Bekerman, P. B. Hoffer, and J. D. Bitran, “The role of gallium-67 in the clinical evaluation of cancer,” Seminars in Nuclear Medicine, vol. 14, no. 4, pp. 296–323, 1984.
[47]  S. G. Davies and N. W. Garvie, “The role of Indium-labelled leukocyte imaging in pyrexia of unknown origin,” British Journal of Radiology, vol. 63, no. 755, pp. 850–854, 1990.
[48]  K. G. Schmidt, J. W. Rasmussen, P. G. Sorensen, and I. M. Wedebye, “Indium-111-granulocyte scintigraphy in the evaluation of patients with fever of undetermined origin,” Scandinavian Journal of Infectious Diseases, vol. 19, no. 3, pp. 339–345, 1987.
[49]  A. Kjaer, A. M. Lebech, A. Eigtved, and L. H?jgaard, “Fever of unknown origin: prospective comparison of diagnostic value of 18F-FDG PET and 111In-granulocyte scintigraphy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 5, pp. 622–626, 2004.
[50]  K. G. Schmidt, J. W. Rasmussen, I. M. Wedebye, P. B. Frederiksen, and N. T. Pedersen, “Accumulation of Indium-111-labeled granulocytes in malignant tumors,” Journal of Nuclear Medicine, vol. 29, no. 4, pp. 479–484, 1988.
[51]  E. Schell-Frederick, J. Fruhling, and P. Van Der Auwera, “111Indium-oxine-labeled leukocytes in the diagnosis of localized infection in patients with neoplastic disease,” Cancer, vol. 54, no. 5, pp. 817–824, 1984.
[52]  S. Yamada, K. Kubota, R. Kubota, T. Ido, and N. Tamahashi, “High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue,” Journal of Nuclear Medicine, vol. 36, no. 7, pp. 1301–1306, 1995.
[53]  J. Meller, G. Altenvoerde, U. Munzel, et al., “Fever of unknown origin: prospective comparison of [18F]FDG imaging with a double-head coincidence camera and gallium-67 citrate SPET,” European Journal of Nuclear Medicine, vol. 27, no. 11, pp. 1617–1625, 2000.
[54]  D. Blockmans, D. Knockaer, A. Maes et al., “Clinical value of [18F]fluoro-deoxyglucose positron emission tomography for patients with fever of unknown origin,” Clinical Infectious Diseases, vol. 32, no. 2, pp. 191–196, 2001.
[55]  J. Lorenzen, R. Buchert, and K. H. Bohuslavizki, “Value of FDG PET in patients with fever of unknown origin,” Nuclear Medicine Communications, vol. 22, no. 7, pp. 779–783, 2001.
[56]  C. P. Bleeker-Rovers, E. M. H. A. de Kleijn, F. H. M. Corstens, J. W. M. van der Meer, and W. J. G. Oyen, “Clinical value of FDG PET in patients with fever of unknown origin and patients suspected of focal infection or inflammation,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 1, pp. 29–37, 2004.
[57]  I. Buysschaert, S. Vanderschueren, D. Blockmans, L. Mortelmans, and D. Knockaert, “Contribution of 18fluoro-deoxyglucose positron emission tomography to the work-up of patients with fever of unknown origin,” European Journal of Internal Medicine, vol. 15, no. 3, pp. 151–156, 2004.
[58]  M. Jaruskova and O. Belohlavek, “Role of FDG-PET and PET/CT in the diagnosis of prolonged febrile states,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 8, pp. 913–918, 2006.
[59]  L. Federici, C. Blondet, A. Imperiale et al., “Value of 18F-FDG-PET/CT in patients with fever of unknown origin and unexplained prolonged inflammatory syndrome: a single centre analysis experience,” International Journal of Clinical Practice, vol. 64, no. 1, pp. 55–60, 2010.
[60]  Z. Keidar, A. Gurman-Balbir, D. Gaitini, and O. Israel, “Fever of unknown origin: the role of 18F-FDG PET/CT,” Journal of Nuclear Medicine, vol. 49, no. 12, pp. 1980–1985, 2008.
[61]  J. Ferda, E. Ferdová, J. Záhlava, M. Matějovi?, and B. Kreuzberg, “Fever of unknown origin: a value of 18F-FDG-PET/CT with integrated full diagnostic isotropic CT imaging,” European Journal of Radiology, vol. 73, no. 3, pp. 518–525, 2010.
[62]  H. Balink, J. Collins, G. Bruyn, and F. Gemmel, “F-18 FDG PET/CT in the diagnosis of fever of unknown origin,” Clinical Nuclear Medicine, vol. 34, no. 12, pp. 862–868, 2009.
[63]  J. F. Sheng, Z. K. Sheng, X. M. Shen et al., “Diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in patients with fever of unknown origin,” European Journal of Internal Medicine, vol. 22, no. 1, pp. 112–116, 2011.
[64]  E. Pelosi, A. Skanjeti, D. Penna, and V. Arena, “Role of integrated PET/CT with [18F]-FDG in the management of patients with fever of unknown origin: a single-centre experience,” Radiologia Medica, vol. 116, no. 5, pp. 809–820, 2011.
[65]  J. Crouzet, V. Boudousq, C. Lechiche, et al., “Place of (18)F-FDG-PET with computed tomography in the diagnostic algorithm of patients with fever of unknown origin,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 31, no. 8, pp. 1727–1733, 2012.
[66]  C. P. Bleeker-Rovers, F. H. M. Corstens, W. J. G. Oyen et al., “Fever of unknown origin: prospective comparison of diagnostic value of 18F-FDG PET and 111in-granulocyte scintigraphy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 9, pp. 1342–1344, 2004.
[67]  N. Jasper, J. D?britz, M. Frosch, M. Loeffler, M. Weckesser, and D. Foell, “Diagnostic value of [18F]-FDG PET/CT in children with fever of unknown origin or unexplained signs of inflammation,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 1, pp. 136–145, 2010.
[68]  F. L. Besson, J. J. Parienti, B. Bienvenu et al., “Diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a systematic review and meta-analysis,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 9, pp. 1764–1772, 2011.
[69]  H. Balink, E. Hut, T. Pol, F. J. Flokstra, and M. Roef, “Suppression of 18F-FDG myocardial uptake using a fat-allowed, carbohydrate-restricted diet,” Journal of Nuclear Medicine Technology, vol. 39, no. 3, pp. 185–189, 2011.
[70]  F. Gemmel, H. Balink, J. Collins, and P. Oomen, “Occult prolactinoma diagnosed by FDG PET/CT,” Clinical Nuclear Medicine, vol. 35, no. 4, pp. 269–270, 2010.
[71]  A. Vrieze, J. E. Schopman, W. M. Admiraal et al., “Fasting and postprandial activity of brown adipose tissue in healthy men,” Journal of Nuclear Medicine, vol. 53, no. 9, pp. 1407–1410, 2012.
[72]  F. Bertagna, G. Treglia, L. Leccisotti et al., “[18F]FDG-PET/CT in patients affected by retroperitoneal fibrosis: a bicentric experience,” Japanese Journal of Radiology, vol. 30, no. 5, pp. 415–421, 2012.
[73]  J. Meller, F. Strutz, U. Siefker et al., “Early diagnosis and follow-up of aortitis with [18F]FDG PET and MRI,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 30, no. 5, pp. 730–736, 2003.
[74]  B. Schwegler, K. D. M. Stumpe, D. Weishaupt et al., “Unsuspected osteomyelitis is frequent in persistent diabetic foot ulcer and better diagnosed by MRI than by 18F-FDG PET or 99mTc-MOAB,” Journal of Internal Medicine, vol. 263, no. 1, pp. 99–106, 2008.
[75]  H. M. Zhuang, A. Cortés-Blanco, M. Pourdehnad et al., “Do high glucose levels have differential effect on FDG uptake in inflammatory and malignant disorders?” Nuclear Medicine Communications, vol. 22, no. 10, pp. 1123–1128, 2001.
[76]  Z. Rabkin, O. Israel, and Z. Keidar, “Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A comparative analysis,” Journal of Nuclear Medicine, vol. 51, no. 7, pp. 1015–1020, 2010.
[77]  I. Zerizer, K. Tan, S. Khan et al., “Role of FDG-PET and PET/CT in the diagnosis and management of vasculitis,” European Journal of Radiology, vol. 73, no. 3, pp. 504–509, 2010.
[78]  C. P. Bleeker-Rovers, S. J. H. Bredie, J. W. M. van der Meer, F. H. M. Corstens, and W. J. G. Oyen, “Fluorine 18 fluorodeoxyglucose positron emission tomography in the diagnosis and follow-up of three patients with vasculitis,” American Journal of Medicine, vol. 116, no. 1, pp. 50–53, 2004.
[79]  D. Blockmans, S. Stroobants, A. Maes, and L. Mortelmans, “Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch,” American Journal of Medicine, vol. 108, no. 3, pp. 246–249, 2000.
[80]  M. Brodmann, R. W. Lipp, A. Passath, G. Seinost, E. Pabst, and E. Pilger, “The role of 2-18F-fluoro-2-deoxy-D-glucose positron emission tomography in the diagnosis of giant cell arteritis of the temporal arteries,” Rheumatology, vol. 43, no. 2, pp. 241–242, 2004.
[81]  C. J. Palestro and C. Love, “Decreased sensitivity of (18)f-fluorodeoxyglucose imaging in infection and inflammation,” Seminars in Nuclear Medicine, vol. 42, no. 4, pp. 261–266, 2012.
[82]  T. C. Kwee, R. M. Kwee, and A. Alavi, “FDG-PET for diagnosing prosthetic joint infection: systematic review and metaanalysis,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 11, pp. 2122–2132, 2008.
[83]  F. Gemmel, W. H. Van den, C. Love, M. M. Welling, P. Gemmel, and C. J. Palestro, “Prosthetic joint infections: radionuclide state-of-the-art imaging,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 5, pp. 892–909, 2012.
[84]  E. M. Becerra Nakayo, A. M. Garcia Vicente, A. M. Soriano Castrejon, et al., “Analysis of cost-effectiveness in the diagnosis of fever of unknown origin and the role of 18F-FDG PET-CT: a proposal of diagnostic algorithm,” Revista Espa?ola de Medicina Nuclear e Imagen Molecular, vol. 31, no. 4, pp. 178–186, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133