The fourth mobile generation requires of multistandard operating handsets of small physical size as well as has an increasing demand for higher data rates. Compact multiband printed inverted-F antennas (IFAs) for available wireless communications are proposed in this paper. A new design of a printed IFA based on a uniplanar compact EBG concept is proposed. An L-loaded printed IFA shaped over an artificial ground plane is designed as the main antenna to cover the GSM, LTE, UMTS, bluetooth, and WLAN. The multi-band is created by means of an electromagnetic band-gap (EBG) structure that is used as a ground plane. Different shapes of uniplanar EBG as ring, split ring resonator, and a spiral rather than mushroom-like structure are investigated. The proposed antenna is built on the uniplanar EBG ground plane with a size of ?mm2, which is suitable for most of the mobile devices. 1. Introduction The current upsurge in wireless communication systems has forced antenna engineering to face new challenges, which include the need for wide bandwidth, small-size, high-performance, robustness, ease of mounting on a host surface and low-cost antennas. To have compatible uses for a wide range of applications by fulfilling mobility requirement and holding up the performance as well as the capability of obtaining dual and triple frequency operations are challenges [1]. Printed IFAs offer an attractive solution to a compact and ease-low-cost design of modern wireless communication systems due to having the above advantages. Printed inverted-F antenna is a simple and compact radiator; however, it cannot radiate efficiently near a perfect electric conductor (PEC) ground plane due to the reverse image currents. Also, printed IFAs suffer from a number of disadvantages as compared to conventional nonprinted antennas. Some of their major drawbacks are the narrow bandwidth, length, low gain, and surface wave excitation that reduce radiation efficiency. To solve the problem of their narrow bandwidth, several techniques can be used [2–4]. A thicker substrate with a low dielectric constant or a ferrite composition provides a wider bandwidth but this approach leads to no low-profile designs and an increase in size. Noncontacting feeding methods such as proximity/aperture coupled can be used to improve the impedance bandwidth, but this is difficult to fabricate. Another possibility is multiresonator stack configuration with the inconvenience of resulting a large thickness prototype [5, 6]. To overcome the problem of large size, the basic antenna miniaturization techniques can be
References
[1]
J. L. Volakis, C. Chih, and K. Fujimoto, Small Antennas: Miniaturization Techniques and Applications, Mc-Graw Hill, New York, NY, USA, 2010.
[2]
M. N. M. Kehn, O. Quevedo-Teruel, and E. Rajo-Iglesias, “Reconfigurable loaded planar inverted-F antenna using varactor diodes,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 466–469, 2011.
[3]
R. A. Bhatti, Y. T. Im, and S. O. Park, “Compact PIFA for mobile terminals supporting multiple cellular and non-cellular standards,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 9, pp. 2534–2540, 2009.
[4]
Q. Quevedo-Teruel, E. Pucci, and E. Rajo-Iglesias, “Compact loaded PIFA for multifrequency applications,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 3, pp. 656–664, 2010.
[5]
K. L. Wong, Compact and Broadband Microstrip Antennas, Wiley-Inter Science, NewYork, NY, USA, 2002.
[6]
S. Chaimool, K. L. Chung, and P. Akkaraekthalin, “Bandwidth and gain enhancement of microstrip patch antennas using reflective metasurface,” IEICE Transactions on Communications B, vol. E93, no. 10, pp. 2496–2503, 2010.
[7]
D. Sievenpiper, L. Zhang, R. F. Broas, N. G. Alex?polous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2059–2074, 1999.
[8]
F. Yang and Y. Rahmat-Samii, Electromagnetic Band-Gap Structures in Antenna Engineering: The Cambridge RF and Microwave Engineering Series, Cambridge University Press, Cambridge, Mass, USA, 2008.
[9]
F. Yang and Y. Rahmat-Samii, “Curl antennas over electromagnetic band-gap surface: a low profiled design for CP applications,” in Proceedings of the IEEE Antennas and Propagation. Society International Symposium, vol. 3, pp. 372–375, July 2001.
[10]
J. Y. Park, C. C. Chang, Y. Qian, and T. Itoh, “An improved low-profile cavity-backed slot antenna loaded with 2D UC-PBG reflector,” in Proceedings of the IEEE Antennas and Propagation. Society International Symposium, pp. 194–197, July 2001.
[11]
F. Yang, V. Demir, D. A. Elsherbeni, A. Z. Elsherbeni, and A. A. Eldek, “Planar dipole antennas near the edge of an EBG ground plane for WLAN applications,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, vol. 1A, pp. 750–753, July 2005.
[12]
D. Nashaat, H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. Elhenawy, “Ultrawide bandwidth 2 × 2 microstrip patch array antenna using electromagnetic band-gap structure (EBG),” IEEE Transactions on Antennas and Propagation, vol. 59, no. 5, pp. 1528–1534, 2011.
[13]
F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2936–2946, 2003.
[14]
S. D. Assimonis, V. Yioultsis, and C. S. Antonopoulos, “Computational investigation and design of planar EBG structures for coupling reduction in antenna applications,” IEEE Transactions on Magnetics, vol. 48, pp. 771–774, 2012.
[15]
M. Y. Fan, R. Feng, Z. H. Hu, X. X. Zhang, and Q. Hao, “Advance in 2D-EBG research,” Journal of Infrared Millimeter Waves, vol. 22, pp. 883–887, 2003.
[16]
M. F. Abedin, M. Z. Azad, and M. Ali, “Wideband smaller unit-cell planar EBG structures and their application,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, pp. 903–908, 2008.
[17]
M. Yamamoto and K. T. Nojima, “Leaf-shaped bowtie antenna backed by a periodic patch loaded grounded slab,” in Proceedings of the IEEE International Symposium on Antennas and Propagation, pp. 622–625, 2011.
[18]
R. C. Hadarig, M. E. de Cos, and F. Las-Heras, “Microstrip patch antenna bandwidth enhancement using AMC/EBG structures,” International Journal of Antennas and Propagation, vol. 2012, Article ID 843754, pp. 1–6, 2012.
[19]
A. Pirhadi, F. Keshmiri, M. Hakkak, and M. Tayarani, “Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS AS superstrate layer,” Progress in Electromagnetics Research, vol. 70, pp. 1–20, 2007.
[20]
Z. Duan, S. Qu, and Y. Hou, “Electrically small antenna inspired by spired split ring resonator,” Progress In Electromagnetics Research Letters, vol. 7, pp. 47–57, 2009.