全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of Response Surface Methodology to Enhance Phenol Removal from Refinery Wastewater by Microwave Process

DOI: 10.1155/2014/639457

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phenol contaminated petroleum refinery wastewater presents a great threat on water resources safety. This study investigates the effect of microwave irradiation on removal of different concentrations of phenol in an attempt for petroleum refinery wastewater treatment. The obtained results show that the MW output power and irradiation time have a significant positive effect on the removal efficiency of phenol. The kinetic reaction is significantly affected by initial MW output power and initial phenol concentrations. Response surface methodology (RSM) was employed to optimize and study the interaction effects of process parameters: MW output power, irradiation time, salinity, pH, and H2O2 concentration using central composite design (CCD). From the CCD design matrix, a quadratic model was considered as an ultimate model ( 2?=?0.75) and its adequacy was justified through analysis of variance (ANOVA). The overall reaction rates were significantly enhanced in the combined MW/H2O2 system as proved by RSM. The optimum values for the design parameters of the MW/H2O2 process were evaluated giving predicted phenol removal percentage of 72.90% through RSM by differential approximation and were confirmed by experimental phenol removal of 75.70% in a batch experiment at optimum conditions of 439?W MW power, irradiation time of 24.22?min, salinity of 574?mg/L, pH 5.10, and initial H2O2 concentration of 10% (v/v). 1. Introduction The main recalcitrant organic material found in petroleum refinery wastewater (PRWW) effluent is phenol due to its high water solubility behavior (86?g/L) and resistance to conventional physicochemical treatment methods, for example, oil separation, coagulation, and flocculation [1, 2]. The phenol concentration in the PRWW effluent is generally in the range of 20–200?mg/L [3, 4], while US Environmental Protection Agency, WHO study in 1998, and Environmental Egyptian Law Number 4, 1994 for wastewater considered phenols as priority pollutants and lowered their content in the wastewater stream to less than 1?mg/L as maximum concentration limit [5]. Due to the phenol propensity to initiate carcinogenic and mutagenic effects on terrestrial as well as aquatic biota and human [6], PRWW effluent needs additional treatment before its final disposal to reduce the phenol concentrations in the wastewaters to accomplish the requirements for discharge in the receiving body and comply with relevant Egyptian and international standards for water recycling and reuse. Over the past few decades, advanced oxidation processes (AOP) have received increasing

References

[1]  B. Chen, M. Yuan, and H. Liu, “Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent,” Journal of Hazardous Materials, vol. 188, no. 1–3, pp. 436–442, 2011.
[2]  T. Sasaki and S. Tanaka, “Adsorption behavior of some aromatic compounds on hydrophobic magnetite for magnetic separation,” Journal of Hazardous Materials, vol. 196, pp. 327–334, 2011.
[3]  T. P. Ryyn?nen, Reduction of waste water loads at petrochemical plants [M.S. thesis], Department of Chemical and Biological Engineering, Division of Chemical Environmental Science, Chalmers University of Technology, G?teborg, Sweden, 2011.
[4]  S. Ishak, A. Malakahmad, and M. H. Isa, “Refinery wastewater biological treatment: a short review,” Journal of Scientific and Industrial Research, vol. 71, no. 4, pp. 251–256, 2012.
[5]  K. F. Al-Sultani and F. A. Al-Seroury, “Characterization the removal of phenol from aqueous solution in fluidized bed column by rice husk adsorbent,” Research Journal of Recent Sciences, vol. 1, no. ISC-2011, pp. 145–151, 2012.
[6]  B. Mukhetjee, J. Turner, and B. Wrenn, “Effect of oil composition on chemical dispersion of crude oil,” Environmental Engineering Science, vol. 28, no. 7, pp. 497–506, 2011.
[7]  B. R. Prasannakumar, I. Regupathi, and T. Murugesan, “An optimization study on microwave irradiated, decomposition of phenol in the presence of H2O2,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 1, pp. 83–91, 2009.
[8]  S. Beszédes, Z. László, Z. H. Horvàth, G. Szabó, and C. Hodúr, “Comparison of the effects of MW irradiation with different intensities on the biodegradability of sludge from the dairy- and meat-industry,” Bioresource Technology, vol. 102, pp. 814–821, 2011.
[9]  W. Li, Q. Zhou, and T. Hua, “Removal of organic matter from landfill leachate by advanced oxidation processes: a review,” International Journal of Chemical Engineering, vol. 2010, Article ID 270532, 10 pages, 2010.
[10]  J. P. Robinson, S. W. Kingman, and O. Onobrakpeya, “Microwave-assisted stripping of oil contaminated drill cuttings,” Journal of Environmental Management, vol. 88, no. 2, pp. 211–218, 2008.
[11]  L. P. Yang, W. Y. Hu, H. M. Huang, and B. Yan, “Degradation of high concentration phenol by ozonation in combination with ultrasonic irradiation,” Desalination and Water Treatment, vol. 21, no. 1–3, pp. 87–95, 2010.
[12]  I. D. Manariotis, H. K. Karapanagioti, and C. V. Chrysikopoulos, “Degradation of PAHs by high frequency ultrasound,” Water Research, vol. 45, no. 8, pp. 2587–2594, 2011.
[13]  Y.-C. Chien, “Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy,” Journal of Hazardous Materials, vol. 199-200, pp. 457–461, 2012.
[14]  P. Klan and V. Cirkva, “Microwave photochemistry,” in Microwaves in Organic Synthesis, A. Loupy, Ed., Chapter 14, pp. 463–486, Wiley-VCH, 2002.
[15]  Y. F. Zhao and J. Chen, “Applications of microwaves in nuclear chemistry and engineering,” Progress in Nuclear Energy, vol. 50, no. 1, pp. 1–6, 2008.
[16]  Y. Y. Shu, T. L. Lai, H.-S. Lin, T. C. Yang, and C.-P. Chang, “Study of factors affecting on the extraction efficiency of polycyclic aromatic hydrocarbons from soils using open-vessel focused microwave-assisted extraction,” Chemosphere, vol. 52, no. 10, pp. 1667–1676, 2003.
[17]  Y. Y. Shu, R. C. Lao, C. H. Chiu, and R. Turle, “Analysis of polycyclic aromatic hydrocarbons in sediment reference materials by microwave-assisted extraction,” Chemosphere, vol. 41, no. 11, pp. 1709–1716, 2000.
[18]  D.-H. Han, S.-Y. Cha, and H.-Y. Yang, “Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study,” Water Research, vol. 38, no. 11, pp. 2782–2790, 2004.
[19]  J. G. Mei, S. M. Yu, and J. Cheng, “Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe-Ti-PILC employing microwave irradiation,” Catalysis Communications, vol. 5, no. 8, pp. 437–440, 2004.
[20]  A. Zhihui, Y. Peng, and L. Xiaohua, “Degradation of 4-Chlorophenol by microwave irradiation enhanced advanced oxidation processes,” Chemosphere, vol. 60, no. 6, pp. 824–827, 2005.
[21]  M. A. Aramendía, J. C. Colmenares, S. López-Fernández et al., “Photocatalytic degradation of chlorinated pyridines in titania aqueous suspensions,” Catalysis Today, vol. 138, no. 1-2, pp. 110–116, 2008.
[22]  D. H. Lataye, I. M. Mishra, and I. D. Mall, “Adsorption of 2-picoline onto bagasse fly ash from aqueous solution,” Chemical Engineering Journal, vol. 138, no. 1–3, pp. 35–46, 2008.
[23]  L. L. Bo, M. W. Li, X. Quan, S. Chen, D. M. Xue, and C. B. Li, “Treatment of high concentration organic wastewater by microwave catalysis,” in Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology Proceedings, Beijing, China, 2002.
[24]  D. H. Bremner, R. Molina, F. Martínez, J. A. Melero, and Y. Segura, “Degradation of phenolic aqueous solutions by high frequency sono-Fenton systems (US–Fe2O3/SBA-15–H2O2),” Applied Catalysis B, vol. 90, no. 3-4, pp. 380–388, 2009.
[25]  M. R. Doosti, R. Kargar, and M. H. Sayadi, “Water treatment using ultrasonic assistance: a review,” Proceedings of the International Academy of Ecology and Environmental Sciences, vol. 2, no. 2, pp. 96–110, 2012.
[26]  Y. Qingshan, L. Yongjin, and M. Lingling, “Kinetics of photocatalytic degradation of gaseous organic compounds on modified TiO2/AC composite photocatalyst,” Chinese Journal of Chemical Engineering, vol. 20, no. 3, pp. 572–576, 2012.
[27]  C. Capellos and B. H. Bielski, Kinetic Systems: Mathematical Description of Chemical Kinetics in Solution, Wiley-Interscience, New York, NY, USA, 1972.
[28]  Y. C. Wong, Y. S. Szeto, W. H. Cheung, and G. McKay, “Adsorption of acid dyes on chitosan—equilibrium isotherm analyses,” Process Biochemistry, vol. 39, no. 6, pp. 693–702, 2004.
[29]  J. Y. Farah, N. S. El-Gendy, and L. A. Farahat, “Biosorption of Astrazone Blue basic dye from an aqueous solution using dried biomass of Baker's yeast,” Journal of Hazardous Materials, vol. 148, no. 1-2, pp. 402–408, 2007.
[30]  G. Cimino, A. Passerini, and G. Toscano, “Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell,” Water Research, vol. 34, no. 11, pp. 2955–2962, 2000.
[31]  M. Papadaki, R. J. Emery, M. A. Abu-Hassan, A. Díaz-Bustos, I. S. Metcalfe, and D. Mantzavinos, “Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents,” Separation and Purification Technology, vol. 34, no. 1–3, pp. 35–42, 2004.
[32]  O. A. Zalat and M. A. Elsayed, “A study on microwave removal of pyridine from wastewater,” Journal of Environmental Chemical Engineering, vol. 1, no. 3, pp. 137–143, 2013.
[33]  V. L. Vaks, G. A. Domrachev, Y. L. Rodygin, D. A. Selivanovskii, and E. I. Spivak, “Dissociation of water by microwave radiation,” Radiophysics and Quantum Electronics, vol. 37, no. 1, pp. 85–88, 1994.
[34]  P. M. Robitaille, “Water, hydrogen bonding, and the microwave background,” Progress in Physics, vol. 2, pp. L5–L8, 2009.
[35]  X. Quan, Y. Zhang, S. Chen, Y. Zhao, and F. Yang, “Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances,” Journal of Molecular Catalysis A: Chemical, vol. 263, no. 1-2, pp. 216–222, 2007.
[36]  D. Zhao, J. Cheng, and M. R. Hoffmann, “Kinetics of microwave-enhanced oxidation of phenol by hydrogen peroxide,” Frontiers of Environmental Science and Engineering in China, vol. 5, no. 1, pp. 57–64, 2011.
[37]  D. Zhao and K. Fei, “Synergetic kinetics of phenol degradation in water by using microwave/H2O2 system,” Journal of Chemical Industry and Engineering, vol. 59, no. 1, pp. 101–105, 2008.
[38]  A. I. Khuri and J. A. Cornell, Response Surfaces: Design and Analysis, Marcel Dekker, New York, NY, USA, 1987.
[39]  J. Virkutyte, V. Vi?ka?kaite, and A. Padarauskas, “Sono-oxidation of soils: degradation of naphthalene by sono-Fenton-like process,” Journal of Soils and Sediments, vol. 10, no. 3, pp. 526–536, 2010.
[40]  M. Clarke and R. E. Kempson, Introduction To the Design and Analysis of Experiments, Arnold, London, UK, 1997.
[41]  K. Ravikumar, K. Pakshirajan, T. Swaminathan, and K. Balu, “Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent,” Chemical Engineering Journal, vol. 105, no. 3, pp. 131–138, 2005.
[42]  R. W?chter and A. Cordery, “Response surface methodology modelling of diamond-like carbon film deposition,” Carbon, vol. 37, no. 10, pp. 1529–1537, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133