全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High Level Expression and Purification of Atl, the Major Autolytic Protein of Staphylococcus aureus

DOI: 10.1155/2014/615965

Full-Text   Cite this paper   Add to My Lib

Abstract:

Staphylococcus aureus is a major human and animal pathogen. Autolysins regulate the growth, turnover, cell lysis, biofilm formation, and the pathogenicity of S. aureus. Atl is the major autolysin in S. aureus. The biochemical and structural studies of staphylococcal Atl have been limited due to difficulty in cloning, high level overexpression, and purification of this protein. This study describes successful cloning, high level over-expression, and purification of two forms of fully functional Atl proteins. These pure proteins can be used to study the functional and structural properties of this important protein. 1. Introduction Staphylococcus aureus is an aggressive pathogen that is responsible for a wide array of diseases from mild skin infections to life-threatening conditions such as bacteremia, pneumonia, and endocarditis [1–4]. The emergence of multidrug resistance in S. aureus is an enormous public health concern and there is an immediate need for additional and alternative therapeutic targets for infections caused by this bacterium [5]. Autolysins are enzymes that degrade the peptidoglycan cell wall layer and are called peptidoglycan hydrolases. They represent a diverse group of enzymes and appear to have redundant roles and more than one function [6, 7]. These enzymes include N-acetylmuramidase, N-acetyl glucosaminidase, N-acetylmuramyl-L-alanine amidase, and endopeptidase [8–11]. While amidases break the bonds between the glycan strand and the stem peptides, the glycosidases are responsible for the cleavage of the glycan strands [7]. Cellular levels and activities of autolysins are believed to be intricately regulated and are proposed to play key roles in bacterial cell wall metabolism, daughter-cell separation, and antibiotic mediated cell lysis [2, 10]. Bacteria may secrete these autolysins and cause lysis of other bacteria that compete with S. aureus for nutrients [12]. The peptidoglycan hydrolases are important in bacterial pathogenicity [13, 14]. These enzymes modulate muropeptide release which in turn activates host innate immune responses [13]. There is plenty of evidence to suggest that most S. aureus autolysins result from the processing of full-length Atl [9, 15]. The full length Atl is an ~137?kDa protein with two catalytically active domains [15–18]. A 63.3?kDa N-terminal domain possesses amidase activity while a 53.6?kDa N-terminal domain possesses the glucosaminidase activity [15–18]. Many investigators [16, 17, 19] in the past have reported difficulty in cloning the full length S. aureus atl gene. A difficulty in overexpression

References

[1]  K. Plata, A. E. Rosato, and G. Wegrzyn, “Staphylococcus aureus as an infectious agent: overview of biochemistry and molecular genetics of its pathogenicity,” Acta Biochimica Polonica, vol. 56, no. 4, pp. 597–612, 2009.
[2]  J. R. Mediavilla, L. Chen, B. Mathema, and B. N. Kreiswirth, “Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA),” Current Opinion in Microbiology, vol. 15, no. 5, pp. 588–595, 2012.
[3]  E. Stenehjem and D. Rimland, “MRSA nasal colonization burden and risk of MRSA infection,” The American Journal of Infection Control, vol. 41, no. 5, pp. 405–410, 2013.
[4]  R. R. Watkins, M. Z. David, and R. A. Salata, “Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus,” Journal of Medical Microbiology, vol. 61, pp. 1179–1193, 2012.
[5]  A. M. Rivera and H. W. Boucher, “Current concepts in antimicrobial therapy against select gram-positive organisms: methicillin-resistant Staphylococcus aureus, Penicillin-resistant pneumococci, and vancomycin-resistant enterococci,” Mayo Clinic Proceedings, vol. 86, no. 12, pp. 1230–1242, 2011.
[6]  T. J. Smith, S. A. Blackman, and S. J. Foster, “Autolysins of Bacillus subtilis: multiple enzymes with multiple functions,” Microbiology, vol. 146, no. 2, pp. 249–262, 2000.
[7]  W. Vollmer, B. Joris, P. Charlier, and S. Foster, “Bacterial peptidoglycan (murein) hydrolases,” FEMS Microbiology Reviews, vol. 32, no. 2, pp. 259–286, 2008.
[8]  S. S. Ingavale, W. van Wamel, and A. L. Cheung, “Characterization of RAT, an autolysis regulator in Staphylococcus aureus,” Molecular Microbiology, vol. 48, no. 6, pp. 1451–1466, 2003.
[9]  L. Ramadurai and R. K. Jayaswal, “Molecular cloning, sequencing, and expression of lytM, a unique autolytic gene of Staphylococcus aureus,” Journal of Bacteriology, vol. 179, no. 11, pp. 3625–3631, 1997.
[10]  L. Ramadurai, K. J. Lockwood, M. J. Nadakavukaren, and R. K. Jayaswal, “Characterization of a chromosomally encoded glycylglycine endopeptidase of Staphylococcus aureus,” Microbiology, vol. 145, no. 4, pp. 801–808, 1999.
[11]  V. K. Singh, M. R. Carlos, and K. Singh, “Physiological significance of the peptidoglycan hydrolase, LytM, in Staphylococcus aureus,” FEMS Microbiology Letters, vol. 311, no. 2, pp. 167–175, 2010.
[12]  T. Uehara and T. G. Bernhardt, “More than just lysins: peptidoglycan hydrolases tailor the cell wall,” Current Opinion in Microbiology, vol. 14, no. 6, pp. 698–703, 2011.
[13]  J. Humann and L. L. Lenz, “Bacterial peptidoglycan-degrading enzymes and their impact on host muropeptide detection,” Journal of Innate Immunity, vol. 1, no. 2, pp. 88–97, 2009.
[14]  E. Scheurwater, C. W. Reid, and A. J. Clarke, “Lytic transglycosylases: bacterial space-making autolysins,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 4, pp. 586–591, 2008.
[15]  S. J. Foster, “Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4,” Journal of Bacteriology, vol. 177, no. 19, pp. 5723–5725, 1995.
[16]  J. L. Bose, M. K. Lehman, P. D. Fey, and K. W. Bayles, “Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation,” PLoS One, vol. 7, no. 7, Article ID e42244, 2012.
[17]  T. Oshida, M. Sugai, H. Komatsuzawa, Y.-M. Hong, H. Suginaka, and A. Tomasz, “A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-β-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 1, pp. 285–289, 1995.
[18]  M. Sugai, H. Komatsuzawa, T. Akiyama et al., “Identification of endo-β-N-acetylglucosaminidase and N-acetylmuramyl-L- alanine amidase as cluster-dispersing enzymes in Staphylococcus aureus,” Journal of Bacteriology, vol. 177, no. 6, pp. 1491–1496, 1995.
[19]  C. Heilmann, M. Hussain, G. Peters, and F. G?tz, “Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface,” Molecular Microbiology, vol. 24, no. 5, pp. 1013–1024, 1997.
[20]  R. P. Novick, “Genetic systems in Staphylococci,” Methods in Enzymology, vol. 204, pp. 587–636, 1991.
[21]  V. K. Singh, D. S. Hattangady, E. S. Giotis et al., “Insertional inactivation of branched-chain α-keto acid dehydrogenase in Staphylococcus aureus leads to decreased branched-chain membrane fatty acid content and increased susceptibility to certain stresses,” Applied and Environmental Microbiology, vol. 74, no. 19, pp. 5882–5890, 2008.
[22]  V. K. Singh, S. Utaida, L. S. Jackson, R. K. Jayaswal, B. J. Wilkinson, and N. R. Chamberlain, “Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus,” Microbiology, vol. 153, no. 9, pp. 3162–3173, 2007.
[23]  J. Moskovitz, V. K. Singh, J. Requena, B. J. Wilkinson, R. K. Jayaswal, and E. R. Stadtman, “Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity,” Biochemical and Biophysical Research Communications, vol. 290, no. 1, pp. 62–65, 2002.
[24]  V. K. Singh, J. Moskovitz, B. J. Wilkinson, and R. K. Jayaswal, “Molecular characterization of a chromosomal locus in Staphylococcus aureus that contributes to oxidative defence and is highly induced by the cell-wall-active antibiotic oxacillin,” Microbiology, vol. 147, no. 11, pp. 3037–3045, 2001.
[25]  V. K. Singh, A. Xiong, T. R. Usgaard et al., “ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus,” Molecular Microbiology, vol. 33, no. 1, pp. 200–207, 1999.
[26]  A. Xiong, V. K. Singh, G. Cabrera, and R. K. Jayaswal, “Molecular characterization of the ferric-uptake regulator. Fur, from Staphylococcus aureus,” Microbiology, vol. 146, no. 3, pp. 659–668, 2000.
[27]  N. Hirschhausen, T. Schlesier, M. A. Schmidt, F. G?tz, G. Peters, and C. Heilmann, “A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor,” Cellular Microbiology, vol. 12, no. 12, pp. 1746–1764, 2010.
[28]  J. Saising, L. Dube, A. K. Ziebandt, S. P. Voravuthikunchai, M. Nega, and F. Gotz, “Activity of Gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms,” Antimicrob Agents Chemother, vol. 56, no. 11, pp. 5804–5810, 2012.
[29]  L. Pasztor, A.-K. Ziebandt, M. Nega et al., “Staphylococcal major autolysin (Atl) is involved in excretion of cytoplasmic proteins,” Journal of Biological Chemistry, vol. 285, no. 47, pp. 36794–36803, 2010.
[30]  N. Mani, L. M. Baddour, D. Q. Offutt, U. Vijaranakul, M. J. Nadakavukaren, and R. K. Jayaswal, “Autolysis-defective mutant of Staphylococcus aureus: pathological considerations, genetic mapping, and electron microscopic studies,” Infection and Immunity, vol. 62, no. 4, pp. 1406–1409, 1994.
[31]  J. A. Hermoso, J. L. García, and P. García, “Taking aim on bacterial pathogens: from phage therapy to enzybiotics,” Current Opinion in Microbiology, vol. 10, no. 5, pp. 461–472, 2007.
[32]  S. S. Tai, “Streptococcus pneumoniae protein vaccine candidates: properties, activities and animal studies,” Critical Reviews in Microbiology, vol. 32, no. 3, pp. 139–153, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133