Nationwide surveillance of invasive pneumococcal disease has been conducted in Germany since 1992. From 1992 to 2008, a total of 12,137 isolates from invasive pneumococcal disease were collected. Data on serotypes were available for 9,394 invasive isolates. The leading serotypes were serotypes 14 (16.5%), 3 (8.0%), 7F (7.6%), 1 (7.3%), and 23F (6.0%). Variations in serotype distribution over the years are particularly extensive, especially concerning serotype 14 (min 7.4%, max 33.5%) with the highest percentages among the isolates serotyped from around 1997 to 2006. Serotypes 1 and 7F increased over the last decade. No increase was observed concerning serotype 19A. Higher pneumococcal conjugate vaccine coverages were observed among children (7v, 57.3%; 10v, 72.8%; 13v, 83.5%) than among adults (7v, 39.9%; 10v, 55.5%; 13v, 73.5%). The temporal variations in serotype distribution have to be kept in mind when interpreting vaccine coverages reported in epidemiological studies. 1. Introduction Streptococcus pneumoniae is one of the most important pathogens in bacterial pneumonia, sepsis, and meningitis worldwide [1]. Significant temporal [2–4] and regional [5–7] variations among pneumococcal serotypes have been described. While the “epidemic” serogroups (serogroups 1-3 and 5) decreased considerably in the United States during the last century, the serogroups included in the seven-valent pneumococcal conjugate vaccine (PCV7) increased clearly [2]. A similar trend has been described in Spain, where the prevalence of PCV7 serotypes increased significantly (except serotype 4) since the start of the study in the early 1980s but then decreased considerably in the 2000s for all PCV7 serotypes except serotype 23F. Among the “epidemic” serotypes, a significant decrease of serotypes 1 and 5 has been observed in the 1980s followed by a significant increase in the late 1990s, while serotype 3 decreased continuously during the observational period. Furthermore, serotypes 6A, 7F, and 19A increased significantly since the late 1990s [4]. The widespread use of antibiotics and the increasing application of pneumococcal conjugate vaccines (a general recommendation of pneumococcal conjugate vaccination for children 2 years in Germany was issued at the end of July 2006) will have an impact on future changes in serotype distribution. The NRCS has conducted surveillance for invasive pneumococcal disease in Germany since 1992 [8]. Between 1992 and 1996 surveillance was based on a limited number of laboratories in Germany on a voluntary basis [9]. In 1996, nationwide
References
[1]
R. Austrian, “Pneumococcus: the first one hundred years,” Reviews of Infectious Diseases, vol. 3, no. 2, pp. 183–189, 1981.
[2]
D. R. Feikin and K. P. Klugman, “Historical changes in pneumococcal serogroup distribution: implications for the era of pneumococcal conjugate vaccines,” Clinical Infectious Diseases, vol. 35, no. 5, pp. 547–555, 2002.
[3]
M. R. Jacobs, C. E. Good, B. Beall, S. Bajaksouzian, A. R. Windau, and C. G. Whitney, “Changes in serotypes and antimicrobial susceptibility of invasive Streptococcus pneumoniae strains in Cleveland: a quarter century of experience,” Journal of Clinical Microbiology, vol. 46, no. 3, pp. 982–990, 2008.
[4]
A. Fenoll, J. J. Granizo, and J. J. Granizo, “Temporal trends of invasive Streptococcus pneumoniae serotypes and antimicrobial resistance patterns in Spain from 1979 to 2007,” Journal of Clinical Microbiology, vol. 47, no. 4, pp. 1012–1020, 2009.
[5]
R. R. Reinert, “Pneumococcal conjugate vaccines—a European perspective,” International Journal of Medical Microbiology, vol. 294, no. 5, pp. 277–294, 2004.
[6]
D. R. Feikin, K. P. Klugman, R. R. Facklam, E. R. Zell, A. Schuchat, and C. G. Whitney, “Increased prevalence of pediatric pneumococcal serotypes in elderly adults,” Clinical Infectious Diseases, vol. 41, no. 4, pp. 481–487, 2005.
[7]
M. Im?hl, R. R. Reinert, and M. van der Linden, “Regional differences in serotype distribution, pneumococcal vaccine coverage, and antimicrobial resistance of invasive pneumococcal disease among German federal states,” International Journal of Medical Microbiology, vol. 300, no. 4, pp. 237–247, 2010.
[8]
R. R. Reinert, A. Queck, A. Kaufhold, M. Kresken, and R. Lütticken, “Antimicrobial resistance and type distribution of Streptococcus pneumoniae isolates causing systemic infections in Germany, 1992–1994,” Clinical Infectious Diseases, vol. 21, no. 6, pp. 1398–1401, 1995.
[9]
R. R. Reinert, A. Al-Lahham, and A. Al-Lahham, “Emergence of macrolide and penicillin resistance among invasive pneumococcal isolates in Germany,” Journal of Antimicrobial Chemotherapy, vol. 49, no. 1, pp. 61–68, 2002.
[10]
R. Von Kries, A. Siedler, H. J. Schmitt, and R. R. Reinert, “Proportion of invasive pneumococcal infections in German children preventable by pneumococcal conjugate vaccines,” Clinical Infectious Diseases, vol. 31, no. 2, pp. 482–487, 2000.
[11]
R. R. Reinert, S. Haupts, M. van der Linden, C. Heeg, M. Y. Cil, A. Al-Lahham, and D. S. Fedson, “Invasive pneumococcal disease in adults in North-Rhine Westphalia, Germany, 2001–2003,” Clinical Microbiology and Infection, vol. 11, no. 12, pp. 985–991, 2005.
[12]
A. Kaufhold, R. Lütticken, and J. Henrichsen, “Capsular types and antibiotic susceptibility of Streptococcus pneumoniae isolated from patients with systemic infections in West Germany,” European Journal of Clinical Microbiology, vol. 6, no. 6, pp. 696–697, 1987.
[13]
S. Rückinger, R. von Kries, R. R. Reinert, M. van der Linden, and A. Siedler, “Childhood invasive pneumococcal disease in Germany between 1997 and 2003: variability in incidence and serotype distribution in absence of general pneumococcal conjugate vaccination,” Vaccine, vol. 26, no. 32, pp. 3984–3986, 2008.
[14]
D. Foster, K. Knox, and K. Knox, “Invasive pneumococcal disease: epidemiology in children and adults prior to implementation of the conjugate vaccine in the Oxfordshire region, England,” Journal of Medical Microbiology, vol. 57, no. 4, pp. 480–487, 2008.
[15]
J. Flamaing, J. Verhaegen, J. Vandeven, N. Verbiest, and W. E. Peetermans, “Pneumococcal bacteraemia in Belgium (1994–2004): the pre-conjugate vaccine era,” Journal of Antimicrobial Chemotherapy, vol. 61, no. 1, pp. 143–149, 2008.
[16]
H. B. Konradsen and M. S. Kaltoft, “Invasive pneumococcal infections in Denmark from 1995 to 1999: epidemiology, serotypes, and resistance,” Clinical and Diagnostic Laboratory Immunology, vol. 9, no. 2, pp. 358–365, 2002.
[17]
M. Im?hl, R. R. Reinert, and M. van der Linden, “Adult invasive pneumococcal disease between 2003 and 2006 in North-Rhine Westphalia, Germany: serotype distribution before recommendation for general pneumococcal conjugate vaccination for children <2 years of age,” Clinical Microbiology and Infection, vol. 15, no. 11, pp. 1008–1012, 2009.
[18]
M. C. de Cunto Brandileone, D. V. V. Simonsen, S. Tadeu Casagrande, et al., “Characteristics of isolates Streptococcus pneumoniae from middle-aged and elderly adults in Brazil: capsular serotypes and antimicrobial sensitivity to invasive infections,” Brazilian Journal of Infectious Diseases, vol. 2, pp. 90–96, 1998.
[19]
J. F. Plouffe, S. K. Moore, R. Davis, and R. R. Facklam, “Serotypes of Streptococcus pneumoniae blood culture isolates from adults in Franklin County, Ohio,” Journal of Clinical Microbiology, vol. 32, no. 6, pp. 1606–1607, 1994.
[20]
C. G. Whitney, M. M. Farley, and M. M. Farley, “Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States,” New England Journal of Medicine, vol. 343, no. 26, pp. 1917–1924, 2000.
[21]
R. Lütticken and A. Kaufhold, “Serotypen und Antibiotikaempfindlichkeit von Streptococcus pneumoniae (Pneumokokken) im Raum K?ln,” Immunitat und Infektion, vol. 13, no. 3, pp. 99–107, 1985.
[22]
L. A. Hicks, L. H. Harrison, and L. H. Harrison, “Incidence of pneumococcal disease due to non- pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004,” Journal of Infectious Diseases, vol. 196, no. 9, pp. 1346–1354, 2007.
[23]
R. R. Reinert, “The antimicrobial resistance profile of Streptococcus pneumoniae,” Clinical Microbiology and Infection, vol. 15, supplement 3, pp. 7–11, 2009.
[24]
W. P. Hausdorff, “Invasive pneumococcal disease in children: geographic and temporal variations in incidence and serotype distribution,” European Journal of Pediatrics, vol. 161, supplement 2, pp. S135–S139, 2002.
[25]
S. Rückinger, M. van der Linden, R. R. Reinert, R. von Kries, F. Burckhardt, and A. Siedler, “Reduction in the incidence of invasive pneumococcal disease after general vaccination with 7-valent pneumococcal conjugate vaccine in Germany,” Vaccine, vol. 27, no. 31, pp. 4136–4141, 2009.
[26]
S. I. Aguiar, I. Serrano, F. R. Pinto, J. Melo-Cristino, and M. Ramirez, “Changes in Streptococcus pneumoniae serotypes causing invasive disease with non-universal vaccination coverage of the seven-valent conjugate vaccine,” Clinical Microbiology and Infection, vol. 14, no. 9, pp. 835–843, 2008.
[27]
R. Dias and M. Cani?a, “Invasive pneumococcal disease in Portugal prior to and after the introduction of pneumococcal heptavalent conjugate vaccine,” FEMS Immunology and Medical Microbiology, vol. 51, no. 1, pp. 35–42, 2007.
[28]
A. Lepoutre, E. Varon, S. Georges, L. Gutmann, and D. Lévy-Bruhl, “Impact of infant pneumococcal vaccination on invasive pneumococcal diseases in France, 2001–2006,” Euro Surveillance, vol. 13, no. 35, 2008.
[29]
R. Mera, L. A. Miller, T. R. Fritsche, and R. N. Jones, “Serotype replacement and multiple resistance in Streptococcus pneumoniae after the introduction of the conjugate pneumococcal vaccine,” Microbial Drug Resistance, vol. 14, no. 2, pp. 101–107, 2008.
[30]
D. Akduman, J. M. Ehret, and F. N. Judson, “Comparison of secular trends in pneumococcal serotypes causing invasive disease in Denver, Colorado (1971–2004) and serotype coverage by marketed pneumococcal vaccines,” Clinical Microbiology and Infection, vol. 12, no. 11, pp. 1141–1143, 2006.
[31]
W. P. Hausdorff, J. Bryant, P. R. Paradiso, and G. R. Siber, “Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use—part I,” Clinical Infectious Diseases, vol. 30, no. 1, pp. 100–121, 2000.
[32]
St?ndige Impfkommission (STIKO), “Empfehlungen der St?ndigen Impfkommission (STIKO) am Robert Koch-Institut (Stand Juli 2006):Begründungen zur allgemeinen Empfehlung der Impfungen gegen Pneumokokken- und Meningokokken im S?uglings- und Kindesalter,” Epidemiolgisches Bulletin, vol. 30, pp. 255–260, 2006.