The genetics and biochemistry of the N-linked glycosylation system of Archaea have been investigated over the past 5 years using flagellins and S layers as reporter proteins in the model organisms, Methanococcus voltae, Methanococcus maripaludis, and Haloferax volcanii. Structures of archaeal N-linked glycans have indicated a variety of linking sugars as well as unique sugar components. In M. voltae, M. maripaludis, and H. volcanii, a number of archaeal glycosylation genes (agl) have been identified by deletion and complementation studies. These include many of the glycosyltransferases and the oligosaccharyltransferase needed to assemble the glycans as well as some of the genes encoding enzymes required for the biosynthesis of the sugars themselves. The N-linked glycosylation system is not essential for any of M. voltae, M. maripaludis, or H. volcanii, as demonstrated by the successful isolation of mutants carrying deletions in the oligosaccharyltransferase gene aglB (a homologue of the eukaryotic Stt3 subunit of the oligosaccharyltransferase complex). However, mutations that affect the glycan structure have serious effects on both flagellation and S layer function. 1. Introduction N-linked glycosylation is one of the most common posttranslational modifications found on proteins in eukaryotic cells [1] and has now been documented in both prokaryotic domains as well [2, 3]. Searches of complete genome sequences can readily identify homologues to the oligosaccharyltransferase STT3 subunit that transfers the assembled glycan from a lipid carrier to the target motif (amide linkage to asparagine within the sequon N-X-S/T) on the protein. This gene would be required in all organisms where N-linked glycosylation occurs and is readily found in eukarya and a limited number of bacteria but in almost all sequenced archaeal genomes. Of greater than 50 completed archaeal genomes, only 2 appear to lack this gene (Aeropyrum pernix and Methanopyrus kandleri) [4], suggesting that this posttranslational modification is much more common in archaea than in bacteria. Indeed, while many glycans associated with S layers in Bacteria have been reported, all are exclusively O-linked [5]. In Archaea, where glycosylation of S layers is more common than in Bacteria, most glycan linkages are of the N variety [6], although S layers containing glycans attached by both O and N linkage occur [7]. Extremely little is known of the O-linked process in Archaea. In Archaea, N-linked glycosylation is most commonly found on S layer proteins [3, 6, 8–12] and flagellins [7, 9, 10, 13, 14] and,
References
[1]
J. Eichler and M. W. W. Adams, “Posttranslational protein modification in Archaea,” Microbiology and Molecular Biology Reviews, vol. 69, no. 3, pp. 393–425, 2005.
[2]
C. M. Szymanski and B. W. Wren, “Protein glycosylation in bacterial mucosal pathogens,” Nature Reviews Microbiology, vol. 3, no. 3, pp. 225–237, 2005.
[3]
M. F. Mescher and J. L. Strominger, “Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium,” Journal of Biological Chemistry, vol. 251, no. 7, pp. 2005–2014, 1976.
[4]
H. Magidovich and J. Eichler, “Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life,” FEMS Microbiology Letters, vol. 300, no. 1, pp. 122–130, 2009.
[5]
P. Messner, “Prokaryotic protein glycosylation is rapidly expanding from “curiosity” to “ubiquity”,” ChemBioChem, vol. 10, no. 13, pp. 2151–2154, 2009.
[6]
C. Sch?ffer and P. Messner, “Glycobiology of surface layer proteins,” Biochimie, vol. 83, no. 7, pp. 591–599, 2001.
[7]
M. Sumper, “Halobacterial glycoprotein biosynthesis,” Biochimica et Biophysica Acta, vol. 906, no. 1, pp. 69–79, 1987.
[8]
U. Karcher, H. Schroder, E. Haslinger et al., “Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus,” Journal of Biological Chemistry, vol. 268, no. 36, pp. 26821–26826, 1993.
[9]
S. Voisin, R. S. Houliston, J. Kelly et al., “Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae,” Journal of Biological Chemistry, vol. 280, no. 17, pp. 16586–16593, 2005.
[10]
J. Lechner and M. Sumper, “The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria,” Journal of Biological Chemistry, vol. 262, no. 20, pp. 9724–9729, 1987.
[11]
R. Mengele and M. Sumper, “Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles,” Journal of Biological Chemistry, vol. 267, no. 12, pp. 8182–8185, 1992.
[12]
M. Abu-Qarn, S. Yurist-Doutsch, A. Giordano et al., “Haloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer,” Journal of Molecular Biology, vol. 374, no. 5, pp. 1224–1236, 2007.
[13]
J. Kelly, S. M. Logan, K. F. Jarrell, D. J. VanDyke, and E. Vinogradov, “A novel N-linked flagellar glycan from Methanococcus maripaludis,” Carbohydrate Research, vol. 344, no. 5, pp. 648–653, 2009.
[14]
F. Wieland, G. Paul, and M. Sumper, “Halobacterial flagellins are sulfated glycoproteins,” Journal of Biological Chemistry, vol. 260, no. 28, pp. 15180–15185, 1985.
[15]
U. Zahringer, H. Moll, T. Hettmann, Y. A. Knirel, and G. Schafer, “Cytochrome b558/566 from the archaeon Sulfolobus acidocaldarius has a unique Asn-linked highly branched hexasaccharide chain containing 6-sulfoquinovose,” European Journal of Biochemistry, vol. 267, no. 13, pp. 4144–4149, 2000.
[16]
L. L. Yang and A. Haug, “Purification and partial characterization of a procaryotic glycoprotein from the plasma membrane of Thermoplasma acidophilum,” Biochimica et Biophysica Acta, vol. 556, no. 2, pp. 265–277, 1979.
[17]
M. Igura, N. Maita, J. Kamishikiryo et al., “Structure-guided identification of a new catalytic motif of oligosaccharyltransferase,” EMBO Journal, vol. 27, no. 1, pp. 234–243, 2008.
[18]
B. Chaban, S. Voisin, J. Kelly, S. M. Logan, and K. F. Jarrell, “Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea,” Molecular Microbiology, vol. 61, no. 1, pp. 259–268, 2006.
[19]
D. J. Vandyke, J. Wu, S. M. Logan et al., “Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis,” Molecular Microbiology, vol. 72, no. 3, pp. 633–644, 2009.
[20]
M. Abu-Qarn and J. Eichler, “Protein N-glycosylation in Archaea: defining Haloferax volcanii genes involved in S-layer glycoprotein glycosylation,” Molecular Microbiology, vol. 61, no. 2, pp. 511–525, 2006.
[21]
H. J. Doddema, J. W. M. Derksen, and G. D. Vogels, “Fimbriae and flagella of methanogenic bacteria,” FEMS Microbiology Letters, vol. 5, no. 3, pp. 135–138, 1979.
[22]
R. L. Weiss, “Attachment of bacteria to sulphur in extreme environments,” Journal of General Microbiology, vol. 77, no. 2, pp. 501–507, 1973.
[23]
S. Y. M. Ng, B. Zolghadr, A. J. M. Driessen, S.-V. Albers, and K. F. Jarrell, “Cell surface structures of archaea,” Journal of Bacteriology, vol. 190, no. 18, pp. 6039–6047, 2008.
[24]
D. W. Müller, C. Meyer, S. Gürster et al., “The Iho670 fibers of Ignicoccus hospitalis: a new type of archaeal cell surface appendage,” Journal of Bacteriology, vol. 191, no. 20, pp. 6465–6468, 2009.
[25]
T. Nutsch, D. Oesterhelt, E. D. Gilles, and W. Marwan, “A quantitative model of the switch cycle of an archaeal flagellar motor and its sensory control,” Biophysical Journal, vol. 89, no. 4, pp. 2307–2323, 2005.
[26]
K. F. Jarrell and M. J. McBride, “The surprisingly diverse ways that prokaryotes move,” Nature Reviews Microbiology, vol. 6, no. 6, pp. 466–476, 2008.
[27]
S. Y. M. Ng, B. Chaban, and K. F. Jarrell, “Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications,” Journal of Molecular Microbiology and Biotechnology, vol. 11, no. 3–5, pp. 167–191, 2006.
[28]
S. L. Bardy, S. Y. M. Ng, and K. F. Jarrell, “Recent advances in the structure and assembly of the archaeal flagellum,” Journal of Molecular Microbiology and Biotechnology, vol. 7, no. 1-2, pp. 41–51, 2004.
[29]
D. M. Faguy and K. F. Jarrell, “A twisted tale: the origin and evolution of motility and chemotaxis in prokaryotes,” Microbiology, vol. 145, no. 2, pp. 279–281, 1999.
[30]
D. J. N?ther, R. Rachel, G. Wanner, and R. Wirth, “Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts,” Journal of Bacteriology, vol. 188, no. 19, pp. 6915–6923, 2006.
[31]
B. Zolghadr, A. Kling, A. Koerdt, A. J.M. Driessen, R. Rachel, and S.-V. Albers, “Appendage-mediated surface adherence of Sulfolobus solfataricus,” Journal of Bacteriology, vol. 192, no. 1, pp. 104–110, 2010.
[32]
K. F. Jarrell, D. P. Bayley, and A. S. Kostyukova, “The archaeal flagellum: a unique motility structure,” Journal of Bacteriology, vol. 178, no. 17, pp. 5057–5064, 1996.
[33]
M. L. Kalmokoff and K. F. Jarrell, “Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus voltae,” Journal of Bacteriology, vol. 173, no. 22, pp. 7113–7125, 1991.
[34]
S. L. Bardy, T. Mori, K. Komoriya, S.-I. Aizawa, and K. F. Jarrell, “Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae,” Journal of Bacteriology, vol. 184, no. 19, pp. 5223–5233, 2002.
[35]
M. Alam and D. Oesterhelt, “Morphology, function and isolation of halobacterial flagella,” Journal of Molecular Biology, vol. 176, no. 4, pp. 459–475, 1984.
[36]
L. Gerl and M. Sumper, “Halobacterial flagellins are encoded by a multigene family. Characterization of five flagellin genes,” Journal of Biological Chemistry, vol. 263, no. 26, pp. 13246–13251, 1988.
[37]
L. Gerl, R. Deutzmann, and M. Sumper, “Halobacterial flagellins are encoded by a multigene family. Identification of all five gene products,” FEBS Letters, vol. 244, no. 1, pp. 137–140, 1989.
[38]
Z. Szabó, M. Sani, M. Groeneveld et al., “Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus,” Journal of Bacteriology, vol. 189, no. 11, pp. 4305–4309, 2007.
[39]
I. Serganova, V. Ksenzenko, A. Serganov et al., “Sequencing of flagellin genes from Natrialba magadii provides new insight into evolutionary aspects of archaeal flagellins,” Journal of Bacteriology, vol. 184, no. 1, pp. 318–322, 2002.
[40]
K. Nagahisa, S. Ezaki, S. Fujiwara, T. Imanaka, and M. Takagi, “Sequence and transcriptional studies of five clustered flagellin genes from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1,” FEMS Microbiology Letters, vol. 178, no. 1, pp. 183–190, 1999.
[41]
K. F. Jarrell, S. Y. Ng, and B. Chaban, “Flagellation and chemotaxis,” in Archaea: Molecular and Cellular Biology, R. Cavicchioli, Ed., pp. 385–410, ASM Press, Washington, DC, USA, 2007.
[42]
S. Cohen-Krausz and S. Trachtenberg, “The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili,” Journal of Molecular Biology, vol. 321, no. 3, pp. 383–395, 2002.
[43]
S. Trachtenberg and S. Cohen-Krausz, “The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure,” Journal of Molecular Microbiology and Biotechnology, vol. 11, no. 3–5, pp. 208–220, 2006.
[44]
S. Cohen-Krausz and S. Trachtenberg, “The flagellar filament structure of the extreme acidothermophile Sulfolobus shibatae B12 suggests that archaeabacterial flagella have a unique and common symmetry and design,” Journal of Molecular Biology, vol. 375, no. 4, pp. 1113–1124, 2008.
[45]
D. M. Faguy, K. F. Jarrell, J. Kuzio, and M. L. Kalmokoff, “Molecular analysis of archaeal flagellins: similarity to the type IV pilin—transport superfamily widespread in bacteria,” Canadian Journal of Microbiology, vol. 40, no. 1, pp. 67–71, 1994.
[46]
S. L. Bardy and K. F. Jarrell, “FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity,” FEMS Microbiology Letters, vol. 208, no. 1, pp. 53–59, 2002.
[47]
S. L. Bardy and K. F. Jarrell, “Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae,” Molecular Microbiology, vol. 50, no. 4, pp. 1339–1347, 2003.
[48]
D. P. Bayley and K. F. Jarrell, “Further evidence to suggest that archaeal flagella are related to bacterial type IV pili,” Journal of Molecular Evolution, vol. 46, no. 3, pp. 370–373, 1998.
[49]
C. R. Peabody, Y. J. Chung, M.-R. Yen, D. Vidal-Ingigliardi, A. P. Pugsley, and M. H. Saier Jr., “Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella,” Microbiology, vol. 149, no. 11, pp. 3051–3072, 2003.
[50]
S.-V. Albers, Z. Szabó, and A. J. M. Driessen, “Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity,” Journal of Bacteriology, vol. 185, no. 13, pp. 3918–3925, 2003.
[51]
Z. Szabó, S.-V. Albers, and A. J. M. Driessen, “Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus,” Journal of Bacteriology, vol. 188, no. 4, pp. 1437–1443, 2006.
[52]
N. Patenge, A. Berendes, H. Engelhardt, S. C. Schuster, and D. Oesterhelt, “The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum,” Molecular Microbiology, vol. 41, no. 3, pp. 653–663, 2001.
[53]
B. Chaban, S. Y. M. Ng, M. Kanbe et al., “Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis,” Molecular Microbiology, vol. 66, no. 3, pp. 596–609, 2007.
[54]
N. A. Thomas, C. T. Pawson, and K. F. Jarrell, “Insertional inactivation of the flaH gene in the archaeon Methanococcus voltae results in non-flagellated cells,” Molecular Genetics and Genomics, vol. 265, no. 4, pp. 596–603, 2001.
[55]
K. F. Jarrell, D. P. Bayley, V. Florian, and A. Klein, “Isolation and characterization of insertional mutations in flagellin genes in the archaeon Methanococcus voltae,” Molecular Microbiology, vol. 20, no. 3, pp. 657–666, 1996.
[56]
S.-V. Albers and A. J. M. Driessen, “Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus,” Microbiology, vol. 151, no. 3, pp. 763–773, 2005.
[57]
A. Yamagata and J. A. Tainer, “Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism,” EMBO Journal, vol. 26, no. 3, pp. 878–890, 2007.
[58]
N. A. Thomas and K. F. Jarrell, “Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins,” Journal of Bacteriology, vol. 183, no. 24, pp. 7154–7164, 2001.
[59]
S. C. Kachlany, P. J. Planet, R. DeSalle, D. H. Fine, and D. H. Figurski, “Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum,” Trends in Microbiology, vol. 9, no. 9, pp. 429–437, 2001.
[60]
S. Streif, W. F. Staudinger, W. Marwan, and D. Oesterhelt, “Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP,” Journal of Molecular Biology, vol. 384, no. 1, pp. 1–8, 2008.
[61]
R. M. Macnab, “Type III flagellar protein export and flagellar assembly,” Biochimica et Biophysica Acta, vol. 1694, no. 1–3, pp. 207–217, 2004.
[62]
K. F. Jarrell, D. J. VanDyke, and J. Wu, “Archaeal flagella and pili,” in Pili and Flagella: Current Research and Future Trends, K. F. Jarrell, Ed., pp. 215–234, Caister Academic Press, Norfolk, UK, 2009.
[63]
S. M. Logan, “Flagellar glycosylation—a new component of the motility repertoire?” Microbiology, vol. 152, no. 5, pp. 1249–1262, 2006.
[64]
B. Chaban, S. M. Logan, J. F. Kelly, and K. F. Jarrell, “AglC and AglK are involved in biosynthesis and attachment of diacetylated glucuronic acid to the N-glycan in Methanococcus voltae,” Journal of Bacteriology, vol. 91, no. 1, pp. 187–195, 2009.
[65]
C. Thoma, M. Frank, R. Rachel et al., “The Mth60 fimbriae of Methanothermobacter thermoautotrophicus are functional adhesins,” Environmental Microbiology, vol. 10, no. 10, pp. 2785–2795, 2008.
[66]
S. Fr?ls, P. M. K. Gordon, M. A. Panlilio et al., “Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage,” Journal of Bacteriology, vol. 189, no. 23, pp. 8708–8718, 2007.
[67]
S. Fr?ls, M. Ajon, M. Wagner et al., “UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation,” Molecular Microbiology, vol. 70, no. 4, pp. 938–952, 2008.
[68]
Y. A. Wang, X. Yu, S. Y. M. Ng, K. F. Jarrell, and E. H. Egelman, “The structure of an archaeal pilus,” Journal of Molecular Biology, vol. 381, no. 2, pp. 456–466, 2008.
[69]
Z. Szabó, A. O. Stahl, S.-V. Albers, J. C. Kissinger, A. J. M. Driessen, and M. Pohlschr?der, “Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases,” Journal of Bacteriology, vol. 189, no. 3, pp. 772–778, 2007.
[70]
S. Y. M. Ng, D. J. VanDyke, B. Chaban et al., “Different minimal signal peptide lengths recognized by the archaeal prepilin-like peptidases FlaK and PibD,” Journal of Bacteriology, vol. 191, no. 21, pp. 6732–6740, 2009.
[71]
G. Rieger, R. Rachel, R. Hermann, and K. O. Stetter, “Ultrastructure of the hyperthermophilic archaeon Pyrodictium abyssi,” Journal of Structural Biology, vol. 115, no. 1, pp. 78–87, 1995.
[72]
S. Nickell, R. Hegerl, W. Baumeister, and R. Rachel, “Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography,” Journal of Structural Biology, vol. 141, no. 1, pp. 34–42, 2003.
[73]
C. Moissl, R. Rachel, A. Briegel, H. Engelhardt, and R. Huber, “The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks,” Molecular Microbiology, vol. 56, no. 2, pp. 361–370, 2005.
[74]
R. Henneberger, C. Moissl, T. Amann, C. Rudolph, and R. Huber, “New insights into the lifestyle of the cold-loving SM1 euryarchaeon: natural growth as a monospecies biofilm in the subsurface,” Applied and Environmental Microbiology, vol. 72, no. 1, pp. 192–199, 2006.
[75]
S.-V. Albers and M. Pohlschr?der, “Diversity of archaeal type IV pilin-like structures,” Extremophiles, vol. 13, no. 3, pp. 403–410, 2009.
[76]
S.-V. Albers, Z. Szabó, and A. J. M. Driessen, “Protein secretion in the Archaea: multiple paths towards a unique cell surface,” Nature Reviews Microbiology, vol. 4, no. 7, pp. 537–547, 2006.
[77]
M. G. L. Elferink, S.-V. Albers, W. N. Konings, and A. J. M. Driessen, “Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters,” Molecular Microbiology, vol. 39, no. 6, pp. 1494–1503, 2001.
[78]
B. Zolghadr, S. Weber, Z. Szabó, A. J. M. Driessen, and S.-V. Albers, “Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus,” Molecular Microbiology, vol. 64, no. 3, pp. 795–806, 2007.
[79]
M. L. Kalmokoff, S. F. Koval, and K. F. Jarrell, “Relatedness of the flagellins from methanogens,” Archives of Microbiology, vol. 157, no. 6, pp. 481–487, 1992.
[80]
H. Claus, E. Ak?a, T. Debaerdemaeker et al., “Molecular organization of selected prokaryotic S-layer proteins,” Canadian Journal of Microbiology, vol. 51, no. 9, pp. 731–743, 2005.
[81]
H. Engelhardt, “Are S-layers exoskeletons? The basic function of protein surface layers revisited,” Journal of Structural Biology, vol. 160, no. 2, pp. 115–124, 2007.
[82]
P. Messner, “Bacterial glycoproteins,” Glycoconjugate Journal, vol. 14, no. 1, pp. 3–11, 1997.
[83]
P. Messner, G. Allmaier, C. Sch?ffer et al., “Biochemistry of S-layers,” FEMS Microbiology Reviews, vol. 20, no. 1-2, pp. 25–46, 1997.
[84]
U. B. Sleytr and T. J. Beveridge, “Bacterial S-layers,” Trends in Microbiology, vol. 7, no. 6, pp. 253–260, 1999.
[85]
R. K. Upreti, M. Kumar, and V. Shankar, “Bacterial glycoproteins: functions, biosynthesis and applications,” Proteomics, vol. 3, no. 4, pp. 363–379, 2003.
[86]
D. Pum, P. Messner, and U. B. Sleytr, “Role of the S layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense,” Journal of Bacteriology, vol. 173, no. 21, pp. 6865–6873, 1991.
[87]
M. Sára and U. B. Sleytr, “S-layer proteins,” Journal of Bacteriology, vol. 182, no. 4, pp. 859–868, 2000.
[88]
B. M. Phipps, R. Huber, and W. Baumeister, “The cell envelope of the hyperthermophilic archaebacterium Pyrobaculum organotrophum consists of two regularly arrayed protein layers: three-dimensional structure of the outer layer,” Molecular Microbiology, vol. 5, no. 2, pp. 253–265, 1991.
[89]
M. Wacker, D. Linton, P. G. Hitchen et al., “N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli,” Science, vol. 298, no. 5599, pp. 1790–1793, 2002.
[90]
H. Nothaft, X. Liu, D. J. McNally, and C. M. Szymanski, “N-linked protein glycosylation in a bacterial system,” Methods in Molecular Biology, vol. 600, pp. 227–243, 2010.
[91]
N. Maita, J. Nyirenda, M. Igura, J. Kamishikiryo, and D. Kohda, “Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases,” Journal of Biological Chemistry, vol. 285, no. 7, pp. 4941–4950, 2010.
[92]
D. Linton, N. Dorrell, P. G. Hitchen et al., “Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway,” Molecular Microbiology, vol. 55, no. 6, pp. 1695–1703, 2005.
[93]
J. Lechner, F. Wieland, and M. Sumper, “Biosynthesis of sulfated saccharides N-glycosidically linked to the protein via glucose. Purification and identification of sulfated dolichyl monophosphoryl tetrasaccharides from halobacteria,” Journal of Biological Chemistry, vol. 260, no. 2, pp. 860–866, 1985.
[94]
C. Kuntz, J. Sonnenbichler, I. Sonnenbichler, M. Sumper, and R. Zeitler, “Isolation and characterization of dolichol-linked oligoscaccharides from Haloferax volcanii,” Glycobiology, vol. 7, no. 7, pp. 897–904, 1997.
[95]
E. Weerapana and B. Imperiali, “Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems,” Glycobiology, vol. 16, no. 6, pp. 91R–101R, 2006.
[96]
J. Lechner and F. Wieland, “Structure and biosynthesis of prokaryotic glycoproteins,” Annual Review of Biochemistry, vol. 58, pp. 173–194, 1989.
[97]
J. Kelly, H. Jarrell, L. Millar et al., “Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer,” Journal of Bacteriology, vol. 188, no. 7, pp. 2427–2434, 2006.
[98]
J. Helenius, D. T. W. Ng, C. L. Marolda, P. Walter, M. A. Valvano, and M. Aebi, “Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein,” Nature, vol. 415, no. 6870, pp. 447–450, 2002.
[99]
C. G. Frank, S. Sanyal, J. S. Rush, C. J. Waechter, and A. K. Menon, “Does Rft1 flip an N-glycan lipid precursor?” Nature, vol. 454, no. 7204, pp. E3–E4, 2008.
[100]
N. Plavner and J. Eichler, “Defining the topology of the N-glycosylation pathway in the halophilic archaeon Haloferax volcanii,” Journal of Bacteriology, vol. 190, no. 24, pp. 8045–8052, 2008.
[101]
N. M. Young, J.-R. Brisson, J. Kelly et al., “Structure of the N-linked glycan present on multiple glycoproteins in the gram-negative bacterium, Campylobacter jejuni,” Journal of Biological Chemistry, vol. 277, no. 45, pp. 42530–42539, 2002.
[102]
P. Messner and U. B. Sleytr, “Asparaginyl-rhamnose: a novel type of protein-carbohydrate linkage in a eubacterial surface-layer glycoprotein,” FEBS Letters, vol. 228, no. 2, pp. 317–320, 1988.
[103]
C. Sch?ffer, T. Wugeditsch, H. K?hlig, A. Scheberl, S. Zayni, and P. Messner, “The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation,” Journal of Biological Chemistry, vol. 277, no. 8, pp. 6230–6239, 2002.
[104]
R. Schreiner, E. Schnabel, and F. Wieland, “Novel N-glycosylation in eukaryotes: laminin contains the linkage unit β- glucosylasparagine,” Journal of Cell Biology, vol. 124, no. 6, pp. 1071–1081, 1994.
[105]
F. Wieland, R. Heitzer, and W. Schaefer, “Asparaginylglucose: novel type of carbohydrate linkage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 181, pp. 5470–5474, 1983.
[106]
M. Abu-Qarn, J. Eichler, and N. Sharon, “Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea,” Current Opinion in Structural Biology, vol. 18, no. 5, pp. 544–550, 2008.
[107]
M. Wacker, M. F. Feldman, N. Callewaert et al., “Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7088–7093, 2006.
[108]
V. W.-F. Tai and B. Imperiali, “Substrate specificity of the glycosyl donor for oligosaccharyl transferase,” Journal of Organic Chemistry, vol. 66, no. 19, pp. 6217–6228, 2001.
[109]
M. F. Feldman, M. Wacker, M. Hernandez et al., “Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 3016–3021, 2005.
[110]
D. Karaoglu, D. J. Kelleher, and R. Gilmore, “Allosteric regulation provides a molecular mechanism for preferential utilization of the fully assembled dolichol-linked oligosaccharide by the yeast oligosaccharyltransferase,” Biochemistry, vol. 40, no. 40, pp. 12193–12206, 2001.
[111]
P. Burda and M. Aebi, “The ALG10 locus of Saccharomyces cerevisiae encodes the α-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-link oligosaccharide is required for efficient N-linked glycosylation,” Glycobiology, vol. 8, no. 5, pp. 455–462, 1998.
[112]
M. Nita-Lazar, M. Wacker, B. Schegg, S. Amber, and M. Aebi, “The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation,” Glycobiology, vol. 15, no. 4, pp. 361–367, 2005.
[113]
M. Abu-Qarn and J. Eichler, “An analysis of amino acid sequences surrounding archaeal glycoprotein sequons,” Archaea, vol. 2, no. 2, pp. 73–81, 2007.
[114]
R. Zeitler, E. Hochmuth, R. Deutzmann, and M. Sumper, “Exchange of Ser-4 for Val, Leu or Asn in the sequon Asn-Ala-Ser does not prevent N-glycosylation of the cell surface glycoprotein from Halobacterium halobium,” Glycobiology, vol. 8, no. 12, pp. 1157–1164, 1998.
[115]
H. Magidovich, S. Yurist-Doutsch, Z. Konrad et al., “AglP is a S-adenosyl-L-methionine-dependent methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii,” Molecular Microbiology, vol. 76, no. 1, pp. 190–199, 2010.
[116]
M. Sumper and F. T. Wieland, “Bacterial glycoproteins,” in Glycoproteins, J. Montreuil, J. F. G. Vliegenthart, and H. Schachter, Eds., pp. 455–473, Elsevier, Amsterdam, The Netherlands, 1995.
[117]
P. Pellerin, B. Fournet, and P. Debeire, “Evidence for the glycoprotein nature of the cell sheath of Methanosaeta-like cells in the culture of Methanothrix soehngenii strain FE,” Canadian Journal of Microbiology, vol. 36, no. 9, pp. 631–636, 1990.
[118]
H. Shams-Eldin, B. Chaban, S. Niehus, R. T. Schwarz, and K. F. Jarrell, “Identification of the archaeal alg7 gene homolog (encoding N-acetylglucosamine-1-phosphate transferase) of the N-linked glycosylation system by cross-domain complementation in Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 190, no. 6, pp. 2217–2220, 2008.
[119]
S. C. Namboori and D. E. Graham, “Acetamido sugar biosynthesis in the euryarchaea,” Journal of Bacteriology, vol. 190, no. 8, pp. 2987–2996, 2008.
[120]
F. D. Sauer, B. A. Blackwell, J. K. G. Kramer, and B. J. Marsden, “Structure of novel cofactor containing N-(7-mercaptoheptanoyl)-O-3-phosphothreonine,” Biochemistry, vol. 29, no. 33, pp. 7593–7600, 1990.
[121]
B. C. Moore and J. A. Leigh, “Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease,” Journal of Bacteriology, vol. 187, no. 3, pp. 972–979, 2005.
[122]
J. S. Rush, C. Alaimo, R. Robbiani, M. Wacker, and C. J. Waechter, “A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O1570,” Journal of Biological Chemistry, vol. 285, no. 3, pp. 1671–1680, 2010.
[123]
G. Ferrante, I. Ekiel, and G. D. Sprott, “Structural characterization of the lipids of Methanococcus voltae, including a novel N-acetylglucosamine 1-phosphate diether,” Journal of Biological Chemistry, vol. 261, no. 36, pp. 17062–17066, 1986.
[124]
S. Yurist-Doutsch and J. Eichler, “Manual annotation, transcriptional analysis, and protein expression studies reveal novel genes in the agl cluster responsible for N glycosylation in the halophilic archaeon Haloferax volcanii,” Journal of Bacteriology, vol. 191, no. 9, pp. 3068–3075, 2009.
[125]
S. Yurist-Doutsch, H. Magidovich, V. V. Ventura, P. G. Hitchen, A. Dell, and J. Eichler, “N-glycosylation in Archaea: on the coordinated actions of Haloferax volcanii AglF and AglM,” Molecular Microbiology, vol. 75, no. 4, pp. 1047–1058, 2010.
[126]
S. Yurist-Doutsch, M. Abu-Qarn, F. Battaglia et al., “AglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein,” Molecular Microbiology, vol. 69, no. 5, pp. 1234–1245, 2008.
[127]
M. Abu-Qarn, A. Giordano, F. Battaglia et al., “Identification of AglE, a second glycosyltransferase involved in N glycosylation of the Haloferax volcanii S-layer glycoprotein,” Journal of Bacteriology, vol. 190, no. 9, pp. 3140–3146, 2008.
[128]
D. J. VanDyke, J. Wu, S. Y. M. Ng et al., “Identification of a putative acetyltransferase gene, MMP0350, which affects proper assembly of both flagella and pili in the archaeon Methanococcus maripaludis,” Journal of Bacteriology, vol. 190, no. 15, pp. 5300–5307, 2008.
[129]
M. Igura, N. Maita, T. Obita, J. Kamishikiryo, K. Maenaka, and D. Kohda, “Purification, crystallization and preliminary X-ray diffraction studies of the soluble domain of the oligosaccharyltransferase STT3 subunit from the thermophilic archaeon Pyrococcus furiosus,” Acta Crystallographica F, vol. 63, no. 9, pp. 798–801, 2007.
[130]
D. P. Bayley, M. L. Kalmokoff, and K. F. Jarrell, “Effect of bacitracin on flagellar assembly and presumed glycosylation of the flagellins of Methanococcus deltae,” Archives of Microbiology, vol. 160, no. 3, pp. 179–185, 1993.
[131]
D. E. Bradley, “A function of Pseudomonas aeruginosa PAO polar pili: twitching motility,” Canadian Journal of Microbiology, vol. 26, no. 2, pp. 146–154, 1980.
[132]
M. Pohlschr?der, M. I. Giménez, and K. F. Jarrell, “Protein transport in Archaea: sec and twin arginine translocation pathways,” Current Opinion in Microbiology, vol. 8, no. 6, pp. 713–719, 2005.
[133]
M. S. Strom, D. N. Nunn, and S. Lory, “Posttranslational processing of type IV prepilin and homologs by PilD of Pseudomonas aeruginosa,” Methods in Enzymology, vol. 235, pp. 527–540, 1994.
[134]
Y. Y. Polosina, K. F. Jarrell, O. V. Fedorov, and A. S. Kostyukova, “Nucleoside diphosphate kinase from haloalkaliphilic archaeon Natronobacterium magadii: purification and characterization,” Extremophiles, vol. 2, no. 3, pp. 333–338, 1998.
[135]
C. Sch?ffer and P. Messner, “Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology,” Glycobiology, vol. 14, no. 8, pp. 31R–42R, 2004.
[136]
S. Yurist-Doutsch, B. Chaban, D. J. VanDyke, K. F. Jarrell, and J. Eichler, “Sweet to the extreme: protein glycosylation in Archaea,” Molecular Microbiology, vol. 68, no. 5, pp. 1079–1084, 2008.