全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Megacities as Sources for Pathogenic Bacteria in Rivers and Their Fate Downstream

DOI: 10.1155/2011/798292

Full-Text   Cite this paper   Add to My Lib

Abstract:

Poor sanitation, poor treatments of waste water, as well as catastrophic floods introduce pathogenic bacteria into rivers, infecting and killing many people. The goal of clean water for everyone has to be achieved with a still growing human population and their rapid concentration in large cities, often megacities. How long introduced pathogens survive in rivers and what their niches are remain poorly known but essential to control water-borne diseases in megacities. Biofilms are often niches for various pathogens because they possess high resistances against environmental stress. They also facilitate gene transfers of antibiotic resistance genes which become an increasing health problem. Beside biofilms, amoebae are carriers of pathogenic bacteria and niches for their survival. An overview about our current understanding of the fate and niches of pathogens in rivers, the multitude of microbial community interactions, and the impact of severe flooding, a prerequisite to control pathogens in polluted rivers, is given. 1. Introduction A multitude of human activities is usually connected with severe impacts on the environment which also includes human settlements [1]. The growth of human population over the last decades and their concentration in large cities [2] contribute to the deterioration of water quality due to intensifications in the industrial processes, domestic sewage discharge as well as agricultural chemicals and eroded soils [3]. Urban populations have exploded worldwide over the last 50 years [4]. Today about 50% of the global population are living in urban areas [5], placing one-third of their inhabitants into slums [6], and creating huge challenges to their environment and sanitation [7]. In many countries, the rapid development in the last century was not equally followed by equivalent measures to protect the environment. Most cities on this planet are located close to rivers which serve as transport routes and water supplies [8]. Too often these rivers are also used as dump sites for waste water and sewage (Figure 1). The percentage of households with piped or well water nearby or with flush toilets generally decline with city size [9]. Megacities, cities with more than 10 million inhabitants [10], are textbook examples for environmental and health problems caused by such a concentration of humans [11]. Megacities are very dynamic because people from rural areas or small cities migrate into megacities with the hope of a better life. Many of them settle in undeveloped areas with insufficient sanitation standards, worsening the already

References

[1]  E. H. Decker, S. Elliott, and F. A. Smith, “Megacities and the environment,” The Scientific World Journal, vol. 2, pp. 374–386, 2002.
[2]  M. R. Montgomery, “The urban transformation of the developing world,” Science, vol. 319, no. 5864, pp. 761–764, 2008.
[3]  United Nations Educational, Scientific and Cultural Organizations (UNESCO), Water for people—water for life, The United Nations world water development report 1, Barcelona, Spain, 2003.
[4]  D. E. Bloom, D. Canning, and G. Fink, “Urbanization and the wealth of nations,” Science, vol. 319, no. 5864, pp. 772–775, 2008.
[5]  C. Dye, “Health and urban living,” Science, vol. 319, no. 5864, pp. 766–769, 2008.
[6]  UN-HABITAT/(United Nations Human Settlement Programme), The Challenge of Slums: Global Report on Human Settlements, Earthscan, London, UK, 2003.
[7]  J. Cohen, “Pipe dreams come true,” Science, vol. 319, no. 5864, pp. 745–746, 2008.
[8]  M. J. Paul and J. L. Meyer, “Streams in the urban landscape,” Annual Review of Ecology and Systematics, vol. 32, pp. 333–365, 2001.
[9]  United Nations Educational, Scientific and Cultural Organizations (UNESCO), “Water—a shared responsibility,” The United Nations world water development report 2, Paris, France, 2006.
[10]  United Nations (UN), World Urbanization Prospects. The 2003 Revision, United Nations Publications, New York, NY, USA, 2003.
[11]  F. Wenzel, F. Bendimerad, and R. Sinha, “Megacities—megarisks,” Natural Hazards, vol. 42, no. 3, pp. 481–491, 2007.
[12]  M. Batty, “The size, scale, and shape of cities,” Science, vol. 319, no. 5864, pp. 769–771, 2008.
[13]  O. Varis, A. K. Biswas, C. Tortajada, and J. Lundqvist, “Megacities and water management,” International Journal of Water Resources Development, vol. 22, no. 2, pp. 377–394, 2006.
[14]  American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), “Standard Methods for the Examination of Water and Wastewater,” London, UK, 1368 pages, 2005.
[15]  C. A. Almeida, S. Quintar, P. González, and M. A. Mallea, “Influence of urbanization and tourist activities on the water quality of the Potrero de los Funes River (San Luis, Argentina),” Environmental Monitoring and Assessment, vol. 133, no. 1–3, pp. 459–465, 2007.
[16]  CETESB (Companhia de Tecnologia de Saneamento Ambiental), Secretary of state of the environment, “Annual report on the interior water quality of the state of S?o Paulo,” S?o Paulo, Brazil, 2009, http://www.cetesb.sp.gov.br/.
[17]  T. M. Straub and D. P. Chandler, “Towards a unified system for detecting waterborne pathogens,” Journal of Microbiological Methods, vol. 53, no. 2, pp. 185–197, 2003.
[18]  J. D. Oliver, “Recent findings on the viable but nonculturable state in pathogenic bacteria,” FEMS Microbiology Reviews, vol. 34, no. 4, pp. 415–425, 2010.
[19]  D. McDougald, S. A. Rice, D. Weichart, and S. Kjelleberg, “Nonculturability: adaptation or debilitation?” FEMS Microbiology Ecology, vol. 25, no. 1, pp. 1–9, 1998.
[20]  M. S. Rappé and S. J. Giovannoni, “The uncultured microbial majority,” Annual Review of Microbiology, vol. 57, pp. 369–394, 2003.
[21]  N. B. Grimm, S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs, “Global change and the ecology of cities,” Science, vol. 319, no. 5864, pp. 756–760, 2008.
[22]  M. Sugiyama, H. Shiogama, and S. Emori, “Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 2, pp. 571–575, 2010.
[23]  World Water Assessment Programme, “Water in a changing world,” The United Nations world water development report 3, UNESCO, Paris, France/Earthscan, London, UK, 2009.
[24]  R. Villalba, A. Lara, and A. Lara, “Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years,” Climatic Change, vol. 59, no. 1-2, pp. 177–232, 2003.
[25]  S. Levitus, J. I. Antonov, T. P. Boyer, and C. Stephens, “Warming of the world oceans,” Science, vol. 287, pp. 2225–2229.
[26]  N. A. Keath and R. R. Brown, “Extreme events: being prepared for the pitfalls with progressing sustainable urban water management,” Water Science and Technology, vol. 59, no. 7, pp. 1271–1280, 2009.
[27]  F. C. Cabello, “Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment,” Environmental Microbiology, vol. 8, no. 7, pp. 1137–1144, 2006.
[28]  J. Marshall, “Environmental health: megacity, mega mess,” Nature, vol. 437, no. 7057, pp. 312–314, 2005.
[29]  B. D. Slenning, “Global climate change and implications for disease emergence,” Veterinary Pathology, vol. 47, no. 1, pp. 28–33, 2010.
[30]  WHO, Emerging Issues in Water and Infectious Disease, World Health Organization, France, 2003.
[31]  WHO, “Overcoming antibiotic resistance,” World Health Organization Report in Infectious Diseases, World Health Organization, Geneva, Switzeland, 2000.
[32]  L. H. Taylor, S. M. Latham, and M. E.J. Woolhouse, “Risk factors for human disease emergence,” Philosophical Transactions of the Royal Society B, vol. 356, no. 1411, pp. 983–989, 2001.
[33]  S. K. Niyogi, “Shigellosis,” Journal of Microbiology, vol. 43, no. 2, pp. 133–143, 2005.
[34]  W.-R. Abraham, A. J. Macedo, L. H. Gomes, and F. C. A. Tavares, “Occurrence and resistance of pathogenic bacteria along the Tietê River downstream of S?o Paulo in Brazil,” Clean, vol. 35, no. 4, pp. 339–347, 2007.
[35]  K. C. Ho, Y. L. Chow, and J. T. S. Yau, “Chemical and microbiological qualities of The East River (Dongjiang) water, with particular reference to drinking water supply in Hong Kong,” Chemosphere, vol. 52, no. 9, pp. 1441–1450, 2003.
[36]  S. Hamner, A. Tripathi, R. K. Mishra, N. Bouskill, S. C. Broadaway, B. H. Pyle, and T. E. Ford, “The role of water use patterns and sewage pollution in incidence of water-borne/enteric diseases along the Ganges River in Varanasi, India,” International Journal of Environmental Health Research, vol. 16, no. 2, pp. 113–132, 2006.
[37]  P. Lata, S. Ram, M. Agrawal, and R. Shanker, “Enterococci in river Ganga surface waters: propensity of species distribution, dissemination of antimicrobial-resistance and virulence-markers among species along landscape,” BMC Microbiology, vol. 9, article no. 140, pp. 1–10, 2009.
[38]  P. Kaur, A. Chakraborti, and A. Asea, “Enteroaggregative Escherichia coli: an emerging enteric food borne pathogen,” Interdisciplinary Perspectives on Infectious Diseases, vol. 2010, Article ID 254159, 10 pages, 2010.
[39]  H. Karch, P. I. Tarr, and M. Bielaszewska, “Enterohaemorrhagic Escherichia coli in human medicine,” International Journal of Medical Microbiology, vol. 295, no. 6-7, pp. 405–418, 2005.
[40]  J. Y. Lim, J. W. Yoon, and C. J. Hovde, “A brief overview of Escherichia coli O157:H7 and its plasmid O157,” Journal of Microbiology and Biotechnology, vol. 20, no. 1, pp. 1–10, 2010.
[41]  S. Hamner, S. C. Broadaway, and S. C. Broadaway, “Isolation of potentially pathogenic Escherichia coli O157:H7 from the Ganges River,” Applied and Environmental Microbiology, vol. 73, no. 7, pp. 2369–2372, 2007.
[42]  S. Ram, P. Vajpayee, and R. Shanker, “Prevalence of multi-antimicrobial-agent resistant shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga,” Environmental Science and Technology, vol. 41, no. 21, pp. 7383–7388, 2007.
[43]  J. Venglovsky, N. Sasakova, and I. Placha, “Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application,” Bioresource Technology, vol. 100, no. 22, pp. 5386–5391, 2009.
[44]  J. A. Thurston-Enriquez, J. E. Gilley, and B. Eghball, “Microbial quality of runoff following land application of cattle manure and swine slurry,” Journal of Water and Health, vol. 3, no. 2, pp. 157–171, 2005.
[45]  L. M. C. Hall and S. K. Henderson-Begg, “Hypermutable bacteria isolated from humans—a critical analysis,” Microbiology, vol. 152, no. 9, pp. 2505–2514, 2006.
[46]  C. Kiewitz and B. Tümmler, “Sequence diversity of Pseudomonas aeruginosa: impact on population structure and genome evolution,” Journal of Bacteriology, vol. 182, no. 11, pp. 3125–3135, 2000.
[47]  J.-P. Pirnay, S. Matthijs, and S. Matthijs, “Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river,” Environmental Microbiology, vol. 7, no. 7, pp. 969–980, 2005.
[48]  P. Karanis, “A review of an emerging waterborne medical important parasitic protozoan,” Japan, Journal of Protozoology, vol. 39, no. 1, pp. 5–18, 2006.
[49]  N. Nwachcuku and C. P. Gerba, “Emerging waterborne pathogens: can we kill them all?” Current Opinion in Biotechnology, vol. 15, no. 3, pp. 175–180, 2004.
[50]  G. M. Merlani and P. Francioli, “Established and emerging waterborne nosocomial infections,” Current Opinion in Infectious Diseases, vol. 16, no. 4, pp. 343–347, 2003.
[51]  E. J. Anaissie, R. T. Kuchar, and R. T. Kuchar, “Fusariosis associated with pathogenic Fusarium species colonization of a hospital water systemml: a new paradigm for the epidemiology of opportunistic mold infections,” Clinical Infectious Diseases, vol. 33, no. 11, pp. 1871–1878, 2001.
[52]  E. J. Anaissie, S. L. Stratton, and S. L. Stratton, “Pathogenic Aspergillus species recovered from a hospital water systemml: a 3-year prospective study,” Clinical Infectious Diseases, vol. 34, no. 6, pp. 780–789, 2002.
[53]  T. M. Straub and D. P. Chandler, “Towards a unified system for detecting waterborne pathogens,” Journal of Microbiological Methods, vol. 53, no. 2, pp. 185–197, 2003.
[54]  S. Okabe and Y. Shimazu, “Persistence of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity,” Applied Microbiology and Biotechnology, vol. 76, no. 4, pp. 935–944, 2007.
[55]  M. Arvanitidou, K. Kanellou, and D. G. Vagiona, “Diversity of Salmonella spp. and fungi in northern Greek rivers and their correlation to fecal pollution indicators,” Environmental Research, vol. 99, no. 2, pp. 278–284, 2005.
[56]  K. St-Pierre, S. Lévesque, E. Frost, N. Carrier, R. D. Arbeit, and S. Michaud, “Thermotolerant coliforms are not a good surrogate for Campylobacter spp. in environmental water,” Applied and Environmental Microbiology, vol. 75, no. 21, pp. 6736–6744, 2009.
[57]  I. Kühn, G. Allestam, T. A. Stenstrom, and R. Mollby, “Biochemical fingerprinting of water coliform bacteria, a new method for measuring phenotypic diversity and for comparing different bacterial populations,” Applied and Environmental Microbiology, vol. 57, no. 11, pp. 3171–3177, 1991.
[58]  I. Kühn, G. Allestam, M. Engdahl, and T.-A. Stenstr?m, “Biochemical fingerprinting of coliform bacterial populations—comparisons between polluted river water and factory effluents,” Water Science and Technology, vol. 35, no. 11-12, pp. 343–350, 1997.
[59]  W. Ahmed, R. Neller, and M. Katouli, “Evidence of septic system failure determined by a bacterial biochemical fingerprinting method,” Journal of Applied Microbiology, vol. 98, no. 4, pp. 910–920, 2005.
[60]  D. R. Call, M. K. Borucki, and F. J. Loge, “Detection of bacterial pathogens in environmental samples using DNA microarrays,” Journal of Microbiological Methods, vol. 53, no. 2, pp. 235–243, 2003.
[61]  J. R. Stewart, R. J. Gast, and R. J. Gast, “The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs,” Environmental Health, vol. 7, supplement 2, article no. S3, 2008.
[62]  A. Fleming, “On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenz?,” Reviews of Infectious Diseases, vol. 10, no. 31, pp. 226–236, 1929.
[63]  S. B. Levy and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,” Nature Medicine, vol. 10, no. 12, pp. S122–S129, 2004.
[64]  N. Woodford and M. J. Ellington, “The emergence of antibiotic resistance by mutation,” Clinical Microbiology and Infection, vol. 13, no. 1, pp. 5–18, 2007.
[65]  A. Oliver, R. Cantón, P. Campo, F. Baquero, and J. Blázquez, “High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection,” Science, vol. 288, no. 5469, pp. 1251–1253, 2000.
[66]  J. E. LeClerc, B. Li, W. L. Payne, and T. A. Cebula, “High mutation frequencies among Escherichia coli and Salmonella pathogens,” Science, vol. 274, no. 5290, pp. 1208–1211, 1996.
[67]  M. D. Macía, D. Blanquer, B. Togores, J. Sauleda, J. L. Pérez, and A. Oliver, “Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 8, pp. 3382–3386, 2005.
[68]  M.-R. Baquero, A. I. Nilsson, and A. I. Nilsson, “Polymorphic mutation frequencies in Escherichia coli: emergence of weak mutators in clinical isolates,” Journal of Bacteriology, vol. 186, no. 16, pp. 5538–5542, 2004.
[69]  K. Kümmerer, “Antibiotics in the aquatic environment—a review—part I,” Chemosphere, vol. 75, no. 4, pp. 417–434, 2009.
[70]  E.-B. Goh, G. Yim, W. Tsui, J. McClure, M. G. Surette, and J. Davies, “Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 17025–17030, 2002.
[71]  H. K. Allen, J. Donato, H. H. Wang, K.A. Cloud-Hansen, J. Davies, and J. Handelsman, “Call of the wild: antibiotic resistance genes in natural environments,” Nature Reviews Microbiology, vol. 8, no. 4, pp. 251–259, 2010.
[72]  B. H. Normark and S. Normark, “Evolution and spread of antibiotic resistance,” Journal of Internal Medicine, vol. 252, no. 2, pp. 91–106, 2002.
[73]  D. Mazel, “Integrons: agents of bacterial evolution,” Nature Reviews Microbiology, vol. 4, no. 8, pp. 608–620, 2006.
[74]  M. Juhas, J. R. Van Der Meer, M. Gaillard, R. M. Harding, D. W. Hood, and D. W. Crook, “Genomic islands: tools of bacterial horizontal gene transfer and evolution,” FEMS Microbiology Reviews, vol. 33, no. 2, pp. 376–393, 2009.
[75]  M. Barlow, “What antimicrobial resistance has taught us about horizontal gene transfer,” Methods in Molecular Biology, vol. 532, pp. 397–411, 2009.
[76]  M. Go?i-Urriza, M. Capdepuy, C. Arpin, N. Raymond, and C. Q. Pierre Caumette, “Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp,” Applied and Environmental Microbiology, vol. 66, no. 1, pp. 125–132, 2000.
[77]  G. Rhodes, G. Huys, J. Swings, P. McGann, M. Hiney, P. Smith, and R. W. Pickup, “Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant Tet A,” Applied and Environmental Microbiology, vol. 66, no. 9, pp. 3883–3890, 2000.
[78]  A. S. Schmidt, M. S. Bruun, I. Dalsgaard, K. Pedersen, and J. L. Larsen, “Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four danish rainbow trout farms,” Applied and Environmental Microbiology, vol. 66, no. 11, pp. 4908–4915, 2000.
[79]  D. J. Austin, K. G. Kristinsson, and R. M. Anderson, “The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 3, pp. 1152–1156, 1999.
[80]  F. M. Aarestrup, H. Kruse, E. Tast, A. M. Hammerum, and L. B. Jensen, “Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway,” Microbial Drug Resistance, vol. 6, no. 1, pp. 63–70, 2000.
[81]  D. Ferber, “Antibiotic resistance. WHO advises kicking the livestock antibiotic habit,” Science, vol. 301, no. 5636, p. 1027, 2003.
[82]  F. Baquero, J.-L. Martínez, and R. Cantón, “Antibiotics and antibiotic resistance in water environments,” Current Opinion in Biotechnology, vol. 19, no. 3, pp. 260–265, 2008.
[83]  A. R. Sapkota, F. C. Curriero, K. E. Gibson, and K. J. Schwab, “Antibiotic-resistant enterococci and fecal indicators in surface water and groundwater impacted by a concentrated swine feeding operation,” Environmental Health Perspectives, vol. 115, no. 7, pp. 1040–1045, 2007.
[84]  A. O. Summers, J. Wireman, and J. Wireman, “Mercury released from dental 'silver' fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates,” Antimicrobial Agents and Chemotherapy, vol. 37, no. 4, pp. 825–834, 1993.
[85]  J. Parkhill, G. Dougan, and G. Dougan, “Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18,” Nature, vol. 413, no. 6858, pp. 848–852, 2001.
[86]  H. Hasman and F. M. Aarestrup, “Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 1, pp. 454–456, 2005.
[87]  P. K. Dhakephalkar and B. A. Chopade, “High levels of multiple metal resistance and its correlation to antibiotic resistance in environmental isolates of Acinetobacter,” BioMetals, vol. 7, no. 1, pp. 67–74, 1994.
[88]  S. Silver and L. T. Phung, “Bacterial heavy metal resistance: new surprises,” Annual Review of Microbiology, vol. 50, pp. 753–789, 1996.
[89]  V. J. Harwood, J. Whitlock, and V. Withington, “Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: use in predicting the source of fecal contamination in subtropical waters,” Applied and Environmental Microbiology, vol. 66, no. 9, pp. 3698–3704, 2000.
[90]  B. Price, E. A. Venso, M. F. Frana, J. Greenberg, A. Ware, and L. Currey, “Classification tree method for bacterial source tracking with antibiotic resistance analysis data,” Applied and Environmental Microbiology, vol. 72, no. 5, pp. 3468–3475, 2006.
[91]  L. Guardabassi, A. Petersen, J. E. Olsen, and A. Dalsgaard, “Antibiotic resistance in Acinetobacter spp. isolated from sewers receiving waste effluent from a hospital and a pharmaceutical plant,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3499–3502, 1998.
[92]  H. K. Allen, L. A. Moe, J. Rodbumrer, A. Gaarder, and J. Handelsman, “Functional metagenomics reveals diverse -lactamases in a remote Alaskan soil,” ISME Journal, vol. 3, no. 2, pp. 243–251, 2009.
[93]  A. Bartoloni, L. Pallecchi, and L. Pallecchi, “Antibiotic resistance in a very remote Amazonas community,” International Journal of Antimicrobial Agents, vol. 33, no. 2, pp. 125–129, 2009.
[94]  M. G. Brown and D. L. Balkwill, “Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface,” Microbial Ecology, vol. 57, no. 3, pp. 484–493, 2009.
[95]  M. A. Gilliver, M. Bennett, M. Begon, S. M. Hazel, and C. A. Hart, “Antibiotic resistance found in wild rodents,” Nature, vol. 401, no. 6750, pp. 233–234, 1999.
[96]  J. L. Martinez, “The role of natural environments in the evolution of resistance traits in pathogenic bacteria,” Proceedings of the Royal Society B, vol. 276, no. 1667, pp. 2521–2530, 2009.
[97]  J. Davies, “Inactivation of antibiotics and the dissemination of resistance genes,” Science, vol. 264, no. 5157, pp. 375–382, 1994.
[98]  P. I. Boon and M. Cattanach, “Antibiotic resistance of native and faecal bacteria isolated from rivers, reservoirs and sewage treatment facilities in Victoria, south-eastern Australia,” Letters in Applied Microbiology, vol. 28, no. 3, pp. 164–168, 1999.
[99]  A. Alonso, P. Sánchez, and J. L. Martínez, “Environmental selection of antibiotic resistance genes,” Environmental Microbiology, vol. 3, no. 1, pp. 1–9, 2001.
[100]  J. L. Martínez, “Antibiotics and antibiotic resistance genes in natural environments,” Science, vol. 321, no. 5887, pp. 365–367, 2008.
[101]  H. P. Bais, B. Prithiviraj, A. K. Jha, F. M. Ausubel, and J. M. Vivanco, “Mediation of pathogen resistance by exudation of antimicrobials from roots,” Nature, vol. 434, no. 7030, pp. 217–221, 2005.
[102]  G. Dantas, M. O. A. Sommer, R. D. Oluwasegun, and G. M. Church, “Bacteria subsisting on antibiotics,” Science, vol. 320, no. 5872, pp. 100–103, 2008.
[103]  V. M. D'Costa, K. M. McGrann, D. W. Hughes, and G. D. Wright, “Sampling the antibiotic resistome,” Science, vol. 311, no. 5759, pp. 374–377, 2006.
[104]  T. Schwartz, W. Kohnen, B. Jansen, and U. Obst, “Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms,” FEMS Microbiology Ecology, vol. 43, no. 3, pp. 325–335, 2003.
[105]  P. Declerck, “Biofilms: the environmental playground of Legionella pneumophila,” Environmental Microbiology, vol. 12, no. 3, pp. 557–566, 2010.
[106]  W.-R. Abraham and D. F. Wenderoth, “Fate of facultative pathogenic microorganisms during and after the flood of the Elbe and Mulde rivers in August 2002,” Acta Hydrochimica et Hydrobiologica, vol. 33, no. 5, pp. 449–454, 2005.
[107]  D. J. Anderson and K. S. Kaye, “Controlling antimicrobial resistance in the hospital,” Infectious Disease Clinics of North America, vol. 23, no. 4, pp. 847–864, 2009.
[108]  P. López-García and D. Moreira, “Tracking microbial biodiversity through molecular and genomic ecology,” Research in Microbiology, vol. 159, no. 1, pp. 67–73, 2008.
[109]  E. F. DeLong and N. R. Pace, “Environmental diversity of bacteria and archaea,” Systematic Biology, vol. 50, no. 4, pp. 470–478, 2001.
[110]  B. Nogales, MA. M. Aguiló-Ferretjans, C. Martín-Cardona, J. Lalucat, and R. Bosch, “Bacterial diversity, composition and dynamics in and around recreational coastal areas,” Environmental Microbiology, vol. 9, no. 8, pp. 1913–1929, 2007.
[111]  R. Atlas, “Use of microbial diversity measurements to assess environmental stress,” in Current Perspectives in Microbial Ecology, M. J. Klug and C. A. Reddy, Eds., pp. 540–545, American Society for Microbiology, Washington, DC, USA, 1984.
[112]  J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott, “Microbial biofilms,” Annual Review of Microbiology, vol. 49, pp. 711–745, 1995.
[113]  L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nature Reviews Microbiology, vol. 2, no. 2, pp. 95–108, 2004.
[114]  M. E. Davey and G. A. O'Toole, “Microbial biofilms: from ecology to molecular genetics,” Microbiology and Molecular Biology Reviews, vol. 64, no. 4, pp. 847–867, 2000.
[115]  A. T. Nielsen, T. Tolker-Nielsen, K. B. Barken, and S. Molin, “Role of commensal relationships on the spatial structure of a surface-attached microbial consortium,” Environmental Microbiology, vol. 2, no. 1, pp. 59–68, 2000.
[116]  B. Schachter, “Slimy business—the biotechnology of biofilms,” Nature Biotechnology, vol. 21, no. 4, pp. 361–365, 2003.
[117]  L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nature Reviews Microbiology, vol. 2, no. 2, pp. 95–108, 2004.
[118]  C. Matz, T. Bergfeld, S. A. Rice, and S. Kjelleberg, “Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing,” Environmental Microbiology, vol. 6, no. 3, pp. 218–226, 2004.
[119]  P. Watnick and R. Kolter, “Biofilm, city of microbes,” Journal of Bacteriology, vol. 182, no. 10, pp. 2675–2679, 2000.
[120]  H. Lünsdorf, I. Brümmer, K. N. Timmis, and I. Wagner-D?bler, “Metal selectivity of in situ microcolonies in biofilms of the Elbe river,” Journal of Bacteriology, vol. 179, no. 1, pp. 31–40, 1997.
[121]  A. Hernández, R. P. Mellado, and J. L. Martínez, “Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia hermannii and Enterobacter cloacae,” Applied and Environmental Microbiology, vol. 64, no. 11, pp. 4317–4320, 1998.
[122]  M. Alam, M. Sultana, and M. Sultana, “Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 45, pp. 17801–17806, 2007.
[123]  W.-R. Abraham, “Controlling pathogenic gram-negative bacteria by interfering with their biofilm formation,” Drug Design Reviews Online, vol. 2, no. 1, pp. 13–33, 2005.
[124]  W.-R. Abraham, “Controlling the biofilm formation of Gram-positive pathogenic bacteria,” Current Medicinal Chemistry, vol. 13, pp. 1509–1524, 2006.
[125]  M. B. Miller, K. Skorupski, D. H. Lenz, R. K. Taylor, and B. L. Bassler, “Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae,” Cell, vol. 110, no. 3, pp. 303–314, 2002.
[126]  I. R. Cooper, H. D. Taylor, and G. W. Hanlon, “Virulence traits associated with verocytotoxigenic Escherichia coli O157 recovered from freshwater biofilms,” Journal of Applied Microbiology, vol. 102, no. 5, pp. 1293–1299, 2007.
[127]  M. Steinert, U. Hentschel, and J. Hacker, “Legionella pneumophila: an aquatic microbe goes astray,” FEMS Microbiology Reviews, vol. 26, no. 2, pp. 149–162, 2002.
[128]  D. W. Fraser, T. R. Tsai, and W. Orenstein, “Legionnaires' disease. Description of an epidemic of pneumonia,” New England Journal of Medicine, vol. 297, no. 22, pp. 1189–1197, 1977.
[129]  W. Witte, “Ecological impact of antibiotic use in animals on different complex microflora: environment,” International Journal of Antimicrobial Agents, vol. 14, no. 4, pp. 321–325, 2000.
[130]  J. Davison, “Genetic exchange between bacteria in the environment,” Plasmid, vol. 42, no. 2, pp. 73–91, 1999.
[131]  M. M. Marshall, D. Naumovitz, Y. Ortega, and C. R. Sterling, “Waterborne protozoan pathogens,” Clinical Microbiology Reviews, vol. 10, no. 1, pp. 67–85, 1997.
[132]  A. A. Gajadhar, W. B. Scandrett, and L. B. Forbes, “Overview of food- and water-borne zoonotic parasites at the farm level,” OIE Revue Scientifique et Technique, vol. 25, no. 2, pp. 595–606, 2006.
[133]  F. Bichai, P. Payment, and B. Barbeau, “Protection of waterborne pathogens by higher organisms in drinking water: a review,” Canadian Journal of Microbiology, vol. 54, no. 7, pp. 509–524, 2008.
[134]  C. H. King, E. B. Shotts Jr., R. E. Wooley, and K. G. Porter, “Survival of coliforms and bacterial pathogens within protozoa during chlorination,” Applied and Environmental Microbiology, vol. 54, no. 12, pp. 3023–3033, 1988.
[135]  F. Lamoth and G. Greub, “Amoebal pathogens as emerging causal agents of pneumonia,” FEMS Microbiology Reviews, vol. 34, no. 3, pp. 260–280, 2010.
[136]  C. S. Nautiyal, “Self-purificatory ganga water facilitates death of pathogenic Escherichia coli O157:H7,” Current Microbiology, vol. 58, no. 1, pp. 25–29, 2009.
[137]  L. C. Ivers and E. T. Ryan, “Infectious diseases of severe weather-related and flood-related natural disasters,” Current Opinion in Infectious Diseases, vol. 19, no. 5, pp. 408–414, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133