The adhesion of Aeromonas hydrophila, Escherichia coli O157:H7, Salmonella Enteritidis, and Staphylococcus aureus to hydrophobic and hydrophilic surfaces in cultures with different pHs (6, 7, and 8) was studied. The results indicated that the type of material had no effect on the attachment capacity of microorganisms, while environmental pH influenced the adhesion of A. hydrophila, E. coli, and S. aureus to both solid substrates. The attachment of S. Enteritidis ( ) was not affected by the type of substrate or the culture pH, whereas E. coli displayed the weakest affinity for both polystyrene and glass surfaces. No correlation was established between the physicochemical properties of the materials, or the bacterial and the rate of bacterial adhesion, except for S. aureus. Photomicrographs have shown that surfaces were contaminated by small clusters of S. Enteritidis while S. aureus invaded the food contact surfaces in the form of small chains or cell aggregates. 1. Introduction In food processing plants, residues of all kinds chemical, biological, organic, or inorganic inevitably accumulate on the surfaces of equipments in contact with food [1]. Attachment of undesirable microorganisms to these surfaces is a source of concern, since this can result in product contamination leading to serious economic and health problems [2–4]. In fact, this microbial contamination has two components: first, the saprophytic flora responsible for food spoilage and second, the pathogenic flora, which cause infections in humans and animals. To adversely affect the sensory, physical, and chemical qualities of food, a large population of spoilage-causing microorganisms is required, while in the case of food pathogens it only takes a few cells to affect product safety and cause food poisoning. In the phenomenon of bacterial adhesion to inert surfaces, the physicochemical properties (hydrophobicity and charges) and substrates or surface topography are playing important roles [5–7]. Joints such as valves and any other difficult-to-reach spaces are the most favourable areas to bacterial adhesion. The effect of corrosion on solid materials must also be considered since it can lead to the formation and expansion of cavities and grooves [8]. This in turn provides breeding sites for microorganisms, thereby compromising the efficacy of cleaning and disinfection procedures. The surface characteristics of the microorganisms themselves and the various environmental conditions encountered in agri-food industries (organic materials, pH, temperature, water activity, etc.) also influence
References
[1]
G. I. Loeb and R. A. Neihof, “Marine conditioning films,” in Applied Chemistry at Protein Interfaces, R. E. Baier, Ed., vol. 145 of Advances Chemical Series, pp. 319–335, American Chemical Society, 1975.
[2]
B. Carpentier and O. Cerf, “Biofilms and their consequences, with particular reference to hygiene in the food industry,” Journal of Applied Bacteriology, vol. 75, no. 6, pp. 499–511, 1993.
[3]
G. A. McFeters, M. J. Bazin, J. D. Bryers, et al., “Biofilm development and its consequences,” in Microbial Adhesion and Aggregation, K. C. Marshall, Ed., pp. 109–124, Springer, Berlin, Germany, 1984.
[4]
R. F. Mueller, “Bacterial transport and colonization in low nutrient environments,” Water Research, vol. 30, no. 11, pp. 2681–2690, 1996.
[5]
C. Faille, C. Jullien, F. Fontaine, M.-N. Bellon-Fontaine, C. Slomianny, and T. Benezech, “Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: Role of surface hydrophobicity,” Canadian Journal of Microbiology, vol. 48, no. 8, pp. 728–738, 2002.
[6]
C. Jullien, T. Bénézech, B. Carpentier, V. Lebret, and C. Faille, “Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry,” Journal of Food Engineering, vol. 56, no. 1, pp. 77–87, 2003.
[7]
D. R. Korber, J. R. Lawrence, B. Sutton, and D. E. Caldwell, “Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot-Pseudomonas fluorescens,” Microbial Ecology, vol. 18, no. 1, pp. 1–19, 1989.
[8]
J-C. Cartonné and R. Tournier, “Corrosion et anticorrosion des matériaux métalliques utilisés dans les équipements et les ateliers bio-industriels,” in Nettoyage, Désinfection et Hygiène dans les Bio-Industries, J.-Y. Leveau, M. Bouix, J.-Y. Leveau, and M. Bouix, Eds., p. 84, Tec & Doc, Paris, France, 1999.
[9]
M. Fletcher, “The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene,” Canadian Journal of Microbiology, vol. 23, no. 1, pp. 1–6, 1977.
[10]
J. W. Foster and H. K. Hall, “Adaptive acidification tolerance response of Salmonella typhimurium,” Journal of Bacteriology, vol. 172, no. 2, pp. 771–778, 1990.
[11]
I. Giovannacci, G. Ermel, G. Salvat, J. L. Vendeuvre, and M. N. Bellon-Fontaine, “Physicochemical surface properties of five Listeria monocytogenes strains from a pork-processing environment in relation to serotypes, genotypes and growth temperature,” Journal of Applied Microbiology, vol. 88, no. 6, pp. 992–1000, 2000.
[12]
M. Gross, S. E. Cramton, F. G?tz, and A. Peschel, “Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces,” Infection and Immunity, vol. 69, no. 5, pp. 3423–3426, 2001.
[13]
H. Anwar, M. K. Dasgupta, and J. W. Costerton, “Testing the susceptibility of bacteria in biofilms to antibacterial agents,” Antimicrobial Agents and Chemotherapy, vol. 34, no. 11, pp. 2043–2046, 1990.
[14]
H. Park, Y.-C. Hung, and C. Kim, “Effectiveness of electrolyzed water as a sanitizer for treating different surfaces,” Journal of Food Protection, vol. 65, no. 8, pp. 1276–1280, 2002.
[15]
P. Chavant, B. Martinie, T. Meylheuc, M.-N. Bellon-Fontaine, and M. Hebraud, “Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases,” Applied and Environmental Microbiology, vol. 68, no. 2, pp. 728–737, 2002.
[16]
CDC. 2002, “Preliminary foodnet data on the incidence of foodborne illnesses—Selected sites, United States,” Morbidity and Mortality Weekly Report, vol. 51, no. 15, pp. 325–329, 2002.
[17]
A. A. Mafu, M. Pitre, and S. Sirois, “Real-time PCR as a tool for detection of pathogenic bacteria on contaminated food contact surfaces by using a single enrichment medium,” Journal of Food Protection, vol. 72, no. 6, pp. 1310–1314, 2009.
[18]
A. A. Mafu, D. Roy, and K. Machika, “Efficiency of disinfecting agents to destroy Listeria monocytogenes, Yersinia enterocolitica and Staphylococcus aureus on a contaminated surface,” Dairy, Food and Environmental Sanitation, vol. 16, no. 7, pp. 426–430, 1996.
[19]
A. A. Mafu, D. Roy, J. Goulet, and L. Savoie, “Characterization of physicochemical forces involved in adhesion of Listeria monocytogenes to surfaces,” Applied and Environmental Microbiology, vol. 57, no. 7, pp. 1969–1973, 1991.
[20]
C. J. Van Oss, M. K. Chaudhury, and R. J. Good, “Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems,” Chemical Reviews, vol. 88, no. 6, pp. 927–941, 1988.
[21]
H. C. van der Mei, R. Bos, and H. J. Busscher, “A reference guide to microbial cell surface hydrophobicity based on contact angles,” Colloids and Surfaces B, vol. 11, no. 4, pp. 213–221, 1998.
[22]
A. A. Mafu, D. Roy, J. Goulet, and P. Magny, “Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times,” Journal of Food Protection, vol. 53, no. 9, pp. 742–746, 1990.
[23]
U. Husmark and U. Ronner, “Forces involved in adhesion of Bacillus cereus spores to solid surfaces under different environmental conditions,” Journal of Applied Bacteriology, vol. 69, no. 4, pp. 557–562, 1990.
[24]
P. Herald and E. A Zottola, “Attachment of Listeria monocytogenes to stainless steel surfaces at various temperatures and pH values,” Journal of Food Science, vol. 53, no. 5, pp. 1549–1552, 1988.
[25]
A. L. Cookson, W. A. Cooley, and M. J. Woodward, “The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces,” International Journal of Medical Microbiology, vol. 292, no. 3-4, pp. 195–205, 2002.
[26]
A. C. L. Wong, “Influence of culture conditions on biofilm formation by Escherichia coli O157:H7,” International Journal of Food Microbiology, vol. 26, no. 2, pp. 147–164, 1995.
[27]
G. Harkes, H. C. van der Mei, P. G. Rouxhet, J. Dankert, H. J. Busscher, and J. Feijen, “Physicochemical characterization of Escherichia coli—a comparison with gram-positive bacteria,” Cell Biochemistry and Biophysics, vol. 20, no. 1, pp. 17–32, 1992.
[28]
M. A. Assanta, D. Roy, M.-J. Lemay, and D. Montpetit, “Evidence for Escherichia coli O157:H7 attachment to water distribution pipe materials by scanning electron microscopy,” Journal of Food Protection, vol. 65, no. 12, pp. 1970–1975, 2002.
[29]
P. Gilbert, D. J. Evans, E. Evans, I. G. Duguid, and M. R. W. Brown, “Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis,” Journal of Applied Bacteriology, vol. 71, no. 1, pp. 72–77, 1991.
[30]
B. E. Brooker, “Surface coat transformation and capsule formation by Leuconostoc mesenteroides NCDO 523 in the presence of sucrose,” Archives of Microbiology, vol. 111, no. 1-2, pp. 99–104, 1976.
[31]
S. K. Hood and E. A. Zottola, “Adherence to stainless steel by foodborne microorganisms during growth in model food systems,” International Journal of Food Microbiology, vol. 37, no. 2-3, pp. 145–153, 1997.
[32]
M.-N. Bellon-Fontaine, N. Mozes, H. C. van der Mei et al., “A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata,” Cell Biophysics, vol. 17, no. 1, pp. 93–106, 1990.
[33]
R. Briandet, T. Meylheuc, C. Maher, and M. N. Bellon-Fontaine, “Listeria monocytogenes Scott A: Cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions,” Applied and Environmental Microbiology, vol. 65, no. 12, pp. 5328–5333, 1999.
[34]
R. J. Rowbury, N. H. Hussain, and M. Goodson, “Extracellular proteins and other components as obligate intermediates in the induction of a range of acid tolerance and sensitisation responses in Escherichia coli,” FEMS Microbiology Letters, vol. 166, no. 2, pp. 283–288, 1998.
[35]
C. Vuong, H. L. Saenz, F. Gotz, and M. Otto, “Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus,” Journal of Infectious Diseases, vol. 182, no. 6, pp. 1688–1693, 2000.
[36]
D. R. Korber, J. R. Lawrence, and D. E. Caldwell, “Effect of motility on surface colonization and reproductive success of Pseudomonas fluorescens in dual-dilution continuous culture and batch culture systems,” Applied and Environmental Microbiology, vol. 60, no. 5, pp. 1421–1429, 1994.
[37]
J. W. McClaine and R. M. Ford, “Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber,” Biotechnology and Bioengineering, vol. 78, no. 2, pp. 179–189, 2002.
[38]
C. M. Brown, D. C. Ellwood, and J. R. Hunter, “Growth of bacteria at surfaces: Influence of nutrient limitation,” FEMS Microbioogy Letters, vol. 1, no. 3, pp. 163–166, 1977.
[39]
M. F. A. Bal’a, I. D. Jamilah, and D. L. Marshall, “Attachment of Aeromonas hydrophila to stainless steel surfaces,” Dairy Food and Environmental Sanitation, vol. 18, no. 10, pp. 1240–1247, 1998.
[40]
M. A. Assanta, D. Roy, M.-J. Lemay, and D. Montpetit, “Attachment of Arcobacter butzleri, a new waterborne pathogen, to water distribution pipe surfaces,” Journal of Food Protection, vol. 65, no. 8, pp. 1240–1247, 2002.
[41]
C.-T. Huang, F. P. Yu, G. A. McFeters, and P. S. Stewart, “Nonuniform spatial patterns of respiratory activity within biofilms during disinfection,” Applied and Environmental Microbiology, vol. 61, no. 6, pp. 2252–2256, 1995.
[42]
S. Sardin, J.-J. Morrier, G. Benay, and O. Barsotti, “In vitro streptococcal adherence on prosthetic and implant materials. Interactions with physicochemical surface properties,” Journal of Oral Rehabilitation, vol. 31, no. 2, pp. 140–148, 2004.