全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of Halorubrum sfaxense sp. nov., a New Halophilic Archaeon Isolated from the Solar Saltern of Sfax in Tunisia

DOI: 10.1155/2011/240191

Full-Text   Cite this paper   Add to My Lib

Abstract:

An extremely halophilic archaeon, strain ETD6, was isolated from a marine solar saltern in Sfax, Tunisia. Analysis of the 16S rRNA gene sequence showed that the isolate was phylogenetically related to species of the genus Halorubrum among the family Halobacteriaceae, with a close relationship to Hrr. xinjiangense (99.77% of identity). However, value for DNA-DNA hybridization between strain ETD6 and Hrr.xinjiangense were about 24.5%. The G+C content of the genomic DNA was 65.1?mol% (T(m)). Strain ETD6 grew in 15–35% (w/v) NaCl. The temperature and pH ranges for growth were 20–55°C and 6–9, respectively. Optimal growth occurred at 25% NaCl, 37°C, and pH 7.4. The results of the DNA hybridization against Hrr. xinjiangense and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain ETD6 from other Hrr. species. Therefore, strain ETD6 represents a novel species of the genus Halorubrum, for which the name Hrr. sfaxense sp. nov. is proposed. The Genbank EMBL-EBI accession number is GU724599. 1. Introduction Extremely halophilic archaea belong into a single euryarchaeotal order (Halobacteriales) that inhabits various hypersaline environments (3–5?M) such as salt lakes, salt ponds, and marine salterns. Previous molecular ecology studies showed that archaeal halophiles dominate these ecosystems [1–3]. Halobacteriales contains a single family Halobacteriaceae with cultivated representatives in solar salterns. These organisms are known to promote crystal formation of halite [4]. Their cells act as seeds or nuclei to promote subsequent development of halite crystals [5]. The genus Halorubrum belongs to the family Halobacteriaceae, as first proposed by McGenity and Grant [6], and species of this genus are ubiquitous in hypersaline environments notably solar salterns. A recent study based on phylogenetic analysis of three ponds of the solar saltern of Sfax indicated that archaeal sequences were exclusively affiliated with the Halobacteriaceae: They were distributed among different genera of the Halobacteriaceae such as Haloquadratum, Halorubrum, and Halobacter [7]. Other studies assessing the diversity of halophilic Archaea in Korean salterns have shown that most sequences detected are grouped within the Halorubrum branch [8]. At the time of writing the genus Halorubrum [6, 9] contained 25 recognized species: Halorubrum aidingense [10], Halorubrum aquaticum [11], Halorubrum alkaliphilum [12], Halorubrum arcis [13], Halorubrum californiense [14], Halorubrum chaoviator [15], Halorubrum cibi [16], Halorubrum coriense [17, 18],

References

[1]  C. D. Litchfield and P. M. Gillevet, “Microbial diversity and complexity in hypersaline environments: a preliminary assessment,” Journal of Industrial Microbiology and Biotechnology, vol. 28, no. 1, pp. 48–55, 2002.
[2]  T. Ochsenreiter, F. Pfeifer, and C. Schleper, “Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies,” Extremophiles, vol. 6, no. 4, pp. 267–274, 2002.
[3]  L. Ovreas, F. L. Daae, V. Torsvik, et al., “Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP),” Microbial Ecology, vol. 46, no. 3, pp. 291–301, 2003.
[4]  C. A. Lopez and J. L. Ochoa, “The biological significance of Halobacteria on nucleation and sodium chloride crystal growth,” in Absorption and Its Applications in Industry and Environmental Protection, Studies in Surface Science and Catalysis, A. Dubrowski, Ed., vol. 120, Elsevier, Amsterdam, The Netherlands, 1998.
[5]  C. F. Norton and W. D. Grant, “Survival of Halobacteria within fluid inclusions in salt crystals,” Journal of General Microbiology, vol. 134, pp. 1365–1373, 1988.
[6]  T. J. McGenity and W. D. Grant, “Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen . nov., as Halorubrum saccharovorum comb . nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov,” Systematic and Applied Microbiology, vol. 18, no. 2, pp. 237–243, 1995.
[7]  H. Baati, S. Guermazi, and R. Amdouni, “Prokaryotic diversity of a Tunisian multipond solar saltern,” Extremophiles, vol. 12, no. 4, pp. 505–518, 2008.
[8]  S. J. Park, C. H. Kang, and S. K. Rhee, “Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis,” Journal of Microbiology and Biotechnology, vol. 16, no. 10, pp. 1640–1645, 2006.
[9]  T. J. McGenity and W. D. Grant, “Genus VII. Halorubrum,” in Bergey's Manual of Systematic Bacteriology, D. R. Boone, R. W. Castenholz, and G. M. Garrity, Eds., vol. 1, Springer, NewYork, NY, USA, 2nd edition, 2001.
[10]  H. L. Cui, D. Tohty, and P. J. Zhou, “Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China,” International Journal of Systematic and Evolutionary Microbiology, vol. 56, no. 7, pp. 1631–1634, 2006.
[11]  M. C. Gutiérrez, A. M. Castillo, P. Corral, et al., “Halorubrum aquaticum sp. nov., an archaeon isolated from hypersaline lakes,” International Journal of Systematic and Evolutionary Microbiology, vol. 61, 2011.
[12]  J. Feng, P. Zhou, Y. G. Zhou, et al., “Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China,” International Journal of Systematic and Evolutionary Microbiology, vol. 55, no. 1, pp. 149–152, 2005.
[13]  X. W. Xu, Y. H. Wu, H. B. Zhang, et al., “Halorubrum arcis sp. nov., an extremely halophilic archaeon isolated from a saline lake on the Qinghai-Tibet Plateau, China,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 5, pp. 1069–1072, 2007.
[14]  P. T. Pesenti, M. Sikaroodi, P. M. Gillevet, et al., “Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California, USA,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 12, pp. 2710–2715, 2008.
[15]  R. L. Mancinelli, R. Landheim, C. Sánchez-Porro, et al., “Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece,” International Journal of Systematic and Evolutionary Microbiology, vol. 59, no. 8, pp. 1908–1913, 2009.
[16]  S. W. Roh and J. W. Bae, “Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood,” Journal of Microbiology, vol. 47, no. 2, pp. 162–166, 2009.
[17]  M. Kamekura and M. L. Dyall-Smith, “Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba,” Journal of General and Applied Microbiology, vol. 41, no. 4, pp. 333–350, 1995.
[18]  A. Oren and A. Ventosa, “A proposal for the transfer of Halorubrobacterium distributum and Halorubrobacterium coriense to the genus Halorubrum as Halorubrum distributum comb. nov. and Halorubrum coriense comb. nov., respectively,” International Journal of Systematic Bacteriology, vol. 46, no. 4, p. 1180, 1996.
[19]  I. S. Zvyagintseva and A. L. Tarasov, “Extreme halophilic bacteria from saline soils,” Microbiology (English translation of Mikrobiologiya), vol. 56, pp. 839–844, 1987 (Russian).
[20]  I. S. Zvyagintseva, E. B. Kudryashova, E. S. Bulygina, et al., “Proposal of a new type strain of Halobacterium distributum,” Microbiology (English translation of Mikrobiologiya), vol. 65, no. 3, pp. 352–354, 1996.
[21]  A. M. Castillo, M. C. Gutiérrez, M. Kamekura, et al., “Halorubrum ejinorense sp. nov., isolated from Lake Ejinor, Inner Mongolia, China,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 11, pp. 2538–2542, 2007.
[22]  K. Kharroub, T. Quesada, R. Ferrer, et al., “Halorubrum ezzemmoulense sp. nov., a halophilic archaeon isolated from Ezzemoul sabkha, Algeria,” International Journal of Systematic and Evolutionary Microbiology, vol. 56, no. 7, pp. 1583–1588, 2006.
[23]  M. C. Gutiérrez, A. M. Castillo, E. Pagaling, et al., “Halorubrum kocurii nov., an archaeon isolated from a saline lake,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 9, pp. 2031–2035, 2008.
[24]  P. D. Franzmann, E. Stackebrandt, K. Sanderson, et al., “Halobacterium lacusprofundi nov., a halophilic bacterium isolated from Deep Lake, Antarctica,” Systematic and Applied Microbiology, vol. 11, pp. 20–27, 1988.
[25]  H. L. Cui, Z. Y. Lin, Y. Dong, et al., “Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 10, pp. 2204–2206, 2007.
[26]  L. Hu, H. Pan, Y. Xue, et al., “Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 7, pp. 1705–1708, 2008.
[27]  A. M. Castillo, M. C. Gutiérrez, M. Kamekura, et al., “Halorubrumorientale nov., a halophilic archaeon isolated from Lake Ejinor, Inner Mongolia, China,” International Journal of Systematic and Evolutionary Microbiology, vol. 56, no. 11, pp. 2559–2563, 2006.
[28]  G. A. Tomlinson and L. I. Hochstein, “Halobacterium saccharovorum sp. nov., a carbohydrate metabolizing, extremely halophilic bacterium,” Canadian Journal of Microbiology, vol. 22, no. 4, pp. 587–591, 1976.
[29]  A. Oren, “Halobacterium sodomense sp. nov., a dead sea halobacterium with an extremely high magnesium requirement,” International Journal of Systematic Bacteriology, vol. 33, no. 2, pp. 381–386, 1983.
[30]  C. Lizama, M. Monteoliva-Sánchez, A. Suárez-Garciá, et al., “Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama Saltern, Chile,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 1, pp. 149–155, 2002.
[31]  A. Ventosa, M. C. Gutiérrez, M. Kamekura, et al., “Taxonomic study of Halorubrum distributum proposal of Halorubrum terrestre sp. nov,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 2, pp. 389–392, 2004.
[32]  H. Fan, Y. Xue, Y. Ma, et al., “Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 4, pp. 1213–1216, 2004.
[33]  W. E. Mwatha and W. D. Grant, “Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya,” International Journal of Systematic Bacteriology, vol. 43, no. 3, pp. 401–404, 1993.
[34]  M. Kamekura, M. L. Dyall-Smith, V. Upasani, et al., “Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis nov., respectively,” International Journal of Systematic Bacteriology, vol. 47, no. 3, pp. 853–857, 1997.
[35]  J. Feng, P. J. Zhou, and S. J. Liu, “Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 5, pp. 1789–1791, 2004.
[36]  R. Amdouni, Etude géochimique des saumures libres, des sédiments et des sels dans la saline de Sfax (Tunisie),, Ph.D. thesis, Thése de l' Université, Paris, France, 1990.
[37]  H. P. Dussault, “An improved technique for staining red halophilic bacteria,” Journal of Bacteriology, vol. 70, no. 4, pp. 484–485, 1955.
[38]  E. F. DeLong, “Archaea in coastal marine environments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5685–5689, 1992.
[39]  S. F. Altschul, W. Gish, W. Miller, et al., “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.
[40]  A. Oren, A. Ventosa, and W. D. Grant, “Proposed minimal standards for description of new taxa in the order Halobacteriales,” International Journal of Systematic Bacteriology, vol. 47, no. 1, pp. 233–238, 1997.
[41]  P. Gerhardt, R. G. E. Murray, W. A. Wood, et al., Eds., Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, DC, USA, 1994.
[42]  E. J. Brown and J. F. Braddock, “Sheen Screen: a miniaturized most-probable-number method for enumeration of oil-degrading microorganisms,” Applied Environmental of Microbiology, vol. 56, no. 12, pp. 3895–3896, 1990.
[43]  D. R. Arahal, F. E. Dewhirst, B. J. Paster, et al., “Phylogenetic analyses of some extremely halophilic archaea isolated from dead sea water, determined on the basis of their 16S rRNA sequences,” Applied and Environmental Microbiology, vol. 62, no. 10, pp. 3779–3786, 1996.
[44]  R. F. Beers Jr. and I. W. Sizer, “A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase,” The Journal of Biological Chemistry, vol. 195, no. 1, pp. 133–140, 1952.
[45]  M. Mesbah, U. Premchandran, and W. B. Whitman, “Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography,” International Journal of Systematic Bacteriology, vol. 39, no. 2, pp. 159–167, 1989.
[46]  P. Cashion, M. A. Holder Franklin, J. McCully, et al., “A rapid method for the base ratio determination of bacterial DNA,” Analytical Biochemistry, vol. 81, no. 2, pp. 461–466, 1977.
[47]  J. Deley, H. Cattoir, and A. Reynaertas, “The quantitative measurements of DNA hybridization from renaturation rates,” European Journal of Biochemistry, vol. 12, pp. 133–142, 1970.
[48]  V. A. R. Huss, H. Festl, and K. H. Schleifer, “Studies on the spectrophotometric determination of DNA hybridization from renaturation rates,” Systematic and Applied Microbiology, vol. 4, no. 2, pp. 184–192, 1983.
[49]  G. Jobb, A. Von Haeseler, and K. Strimmer, “TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics,” BMC Evolutionary Biology, vol. 4, p. 18, 2004.
[50]  M. B. Mutlu, M. Martínez-García, F. Santos, et al., “Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey,” FEMS Microbiology Ecology, vol. 65, no. 3, pp. 474–483, 2008.
[51]  A. Oren, “Thymidine incorporation in saltern ponds of different salinities: estimation of in situ growth rates of halophilic archaeobacteria and eubacteria,” Microbial Ecology, vol. 19, no. 1, pp. 43–51, 1990.
[52]  E. Stackebrandt and B. M. Goebel, “A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology,” International Journal of Systematic Bacteriology, vol. 44, no. 4, pp. 846–849, 1994.
[53]  R. T. Papke, O. Zhaxybayeva, E. J. Feil, et al., “Searching for species in haloarchaea,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 35, pp. 14092–14097, 2007.
[54]  A. Oren, D. R. Arahal, and A. Ventosa, “Emended descriptions of genera of the family Halobacteriaceae,” International Journal of Systematic and Evolutionary Microbiology, vol. 59, no. 3, pp. 637–642, 2009.
[55]  M. Kamekura, “Production and function of enzymes of eubacterial halophiles,” FEMS Microbiology Reviews, vol. 39, no. 1-2, pp. 145–150, 1986.
[56]  A. Ventosa and J. J. Nieto, “Biotechnological applications and potentialities of halophilic microorganisms,” World Journal of Microbiology and Biotechnology, vol. 11, no. 1, pp. 85–94, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133