There is extensive data to support the use of commercial transport media as a stabilizer for known clinical samples; however, there is little information to support their use outside of controlled conditions specified by the manufacturer. Furthermore, there is no data to determine the suitability of said media for biological pathogens, specifically those of interest to the US military. This study evaluates commercial off-the-shelf (COTS) transport media based on sample recovery, viability, and quality of nucleic acids and peptides for nonpathogenic strains of Bacillus anthracis, Yersinia pestis, and Venezuelan equine encephalitis virus, in addition to ricin toxin. Samples were stored in COTS, PBST, or no media at various temperatures over an extended test period. The results demonstrate that COTS media, although sufficient for the preservation of nucleic acid and proteinaceous material, are not capable of maintaining an accurate representation of biothreat agents at the time of collection. 1. Introduction The anthrax attacks of 2001 highlighted gaps in the US bio-terrorism related preparedness [1]. The large numbers of incoming samples overwhelmed on-site mobile laboratories and required shipping sample off-site for analysis of viability in support of large-scale remediation activities such as those that occurred at the Brentwood Postal Offices and the Hart Senate Office building [2]. On-site sample extracts were stored in water at 4°C or ?20°C for longer storage times. For off-site analysis, swabs were shipped dry on ice. Retrospective analysis of the events clearly indicates that a lack of standardized collection and processing techniques for environmental samples complicated contamination and clean-up assessment [1, 3]. Biological remediation activities, longitudinal clinical studies, and verification activities in support of military and treaty exploitation each share a common theme—a requirement to collect samples and preserve them for examination and analysis at a future date. In situations where samples must be analyzed by offsite laboratories, significant time can elapse between when a sample is collected and when it is analyzed. In these situations a biological sample will often lose viability for re-growth or degrade and denature which makes subsequent analysis by PCR or immunoassay more difficult. It is imperative to have a process for short- and long-term storage that is efficient and preserves sample integrity over time. For collection teams that support military or international treaty verification organizations, that need is further
References
[1]
E. H. Teshale, J. Painter, G. A. Burr et al., “Environmental sampling for spores of Bacillus anthracis,” Emerging Infectious Diseases, vol. 8, no. 10, pp. 1083–1087, 2002.
[2]
J. A. Higgins, M. Cooper, L. Schroeder-Tucker et al., “A field investigation of Bacillus anthracis contamination of U.S. Department of agriculture and other Washington, D.C., buildings during the anthrax attack of October 2001,” Applied and Environmental Microbiology, vol. 69, no. 1, pp. 593–599, 2003.
[3]
D. A. Canter, “Addressing residual risk issues at anthrax cleanups: how clean is safe?” Journal of Toxicology and Environmental Health A, vol. 68, no. 11-12, pp. 1017–1032, 2005.
[4]
P. P. Bourbeau and B. J. Heiter, “Evaluation of copan swabs with liquid transport media for use in the gen-probe group a strep direct test,” Journal of Clinical Microbiology, vol. 41, no. 6, pp. 2686–2689, 2003.
[5]
M. P. Buttner, P. Cruz-Perez, and L. D. Stetzenbach, “Enhanced detection of surface-associated bacteria in indoor environments by quantitative PCR,” Applied and Environmental Microbiology, vol. 67, no. 6, pp. 2564–2570, 2001.
[6]
M. P. Buttner, P. Cruz, L. D. Stetzenbach, A. K. Klima-Comba, V. L. Stevens, and P. A. Emanuel, “Evaluation of the biological sampling kit (BiSKit) for large-area surface sampling,” Applied and Environmental Microbiology, vol. 70, no. 12, pp. 7040–7045, 2004.
[7]
M. P. Buttner, P. Cruz, L. D. Stetzenbach, and T. Cronin, “Evaluation of two surface sampling methods for detection of Erwinia herbicola on a variety of materials by culture and quantitative PCR,” Applied and Environmental Microbiology, vol. 73, no. 11, pp. 3505–3510, 2007.
[8]
C. G. Cumming and P. W. Ross, “Evaluation of bacteriologic swabs and transport media in the recovery of group B streptococci on laboratory media,” Journal of Clinical Pathology, vol. 32, no. 10, pp. 1066–1069, 1979.
[9]
S. M. Da Silva, J. J. Filliben, and J. B. Morrow, “Parameters affecting spore recovery from wipes used in biological surface sampling,” Applied and Environmental Microbiology, vol. 77, no. 7, pp. 2374–2380, 2011.
[10]
C. Drake, J. Barenfanger, J. Lawhorn, and S. Verhulst, “Comparison of easy-flow copan liquid Stuart's and starplex swab transport systems for recovery of fastidious aerobic bacteria,” Journal of Clinical Microbiology, vol. 43, no. 3, pp. 1301–1303, 2005.
[11]
J. M. Edmonds, “Efficient methods for large-area surface sampling of sites contaminated with pathogenic microorganisms and other hazardous agents: current state, needs, and perspectives,” Applied Microbiology and Biotechnology, vol. 84, no. 5, pp. 811–816, 2009.
[12]
J. M. Edmonds, P. J. Collett, E. R. Valdes, E. W. Skowronski, G. J. Pellar, and P. A. Emanuel, “Surface sampling of spores in dry-deposition aerosols,” Applied and Environmental Microbiology, vol. 75, no. 1, pp. 39–44, 2009.
[13]
D. A. Frawley, M. N. Samaan, R. L. Bull, J. M. Robertson, A. J. Mateczun, and P. C. Turnbull, “Recovery efficiencies of anthrax spores and ricin from nonporous or nonabsorbent and porous or absorbent surfaces by a variety of sampling methods,” Journal of Forensic Sciences, vol. 53, no. 5, pp. 1102–1107, 2008.
[14]
L. Rose, B. Jensen, A. Peterson, S. N. Banerjee, and M. J. Arduino, “Swab materials and Bacillus anthracis spore recovery from nonporous surfaces,” Emerging Infectious Diseases, vol. 10, no. 6, pp. 1023–1029, 2004.
[15]
P. W. Ross, C. G. Cumming, and H. Lough, “Swabs and swab-transport media kits in the isolation of upper respiratory bacteria,” Journal of Clinical Pathology, vol. 35, no. 2, pp. 223–227, 1982.
[16]
K. G. Van Horn and I. Rankin, “Evaluation and comparison of two Stuart's liquid swab transport systems tested by the CLSI M40 method,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 26, no. 8, pp. 583–586, 2007.
[17]
K. G. Van Horn, C. D. Audette, K. A. Tucker, and D. Sebeck, “Comparison of 3 swab transport systems for direct release and recovery of aerobic and anaerobic bacteria,” Diagnostic Microbiology and Infectious Disease, vol. 62, no. 4, pp. 471–473, 2008.
[18]
K. G. Van Horn, C. D. Audette, D. Sebeck, and K. A. Tucker, “Comparison of the copan ESwab system with two Amies agar swab transport systems for maintenance of microorganism viability,” Journal of Clinical Microbiology, vol. 46, no. 5, pp. 1655–1658, 2008.
[19]
H. Noguchi, “On the inhibitory influence of eosin upon sporulation,” The Journal of Experimental Medicine, vol. 10, no. 1, pp. 30–35, 1908.
[20]
P. J. Piggot and J. G. Coote, “Genetic aspects of bacterial endospore formation,” Bacteriological Reviews, vol. 40, no. 4, pp. 908–962, 1976.
[21]
C. Bongiorni, R. Stoessel, and M. Perego, “Negative regulation of Bacillus anthracis sporulation by the Spo0E family of phosphatases,” Journal of Bacteriology, vol. 189, no. 7, pp. 2637–2645, 2007.
[22]
H. Liu, N. H. Bergman, B. Thomason et al., “Formation and composition of the Bacillus anthracis endospore,” Journal of Bacteriology, vol. 186, no. 1, pp. 164–178, 2004.
[23]
E. Saile and T. M. Koehler, “Control of anthrax toxin gene expression by the transition state regulator abrB,” Journal of Bacteriology, vol. 184, no. 2, pp. 370–380, 2002.
[24]
R. G. Webster and R. W. Darlington, “Disruption of myxoviruses with Tween 20 and isolation of biologically active hemagglutinin and neuraminidase subunits,” Journal of Virology, vol. 4, no. 2, pp. 182–187, 1969.