全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation

DOI: 10.1155/2014/389416

Full-Text   Cite this paper   Add to My Lib

Abstract:

Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with an excellent crystalline structure. Debye-Scherrer equation is used for the determination of particle size, which was found to be 9.2?nm. Tunneling electron microscope analysis indicated that the as-synthesized particles are nanoparticles with an average particle size of 9?nm. Meanwhile, the ultraviolet-visible spectroscopy of the resulting product was evaluated to study its optical property via measurement of the band gap energy value. 1. Introduction In last two decades, synthesis of metal oxide nanoparticles has attracted considerable attention [1, 2]. Abundant techniques have been also developed to prepare nanoparticles of MgO. This nanoparticle has attracted much attention due to its wide band gap [3]. However, most of the techniques need high temperatures and perform under a costly inert atmosphere. Kaviyarasu and Devarajan reported a versatile route to synthesize MgO nanoparticles by combustion technique [4]. Lange and Obendorf studied the effect of plasma etching on destructive adsorption properties of polypropylene fibres containing magnesium oxide nanoparticles [5]. Jin and He demonstrated antibacterial activities of MgO nanoparticles against food borne pathogens [6]. Mirzaei and Davoodnia reported the microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of Hantzsch 1,4-dihydropyridines [7]. Camtakan et al. studied the uranium sorption properties of MgO [8]. For the present work, solvent mixed spray pyrolysis method was undertaken to prepare MgO nanoparticles. To the best of our knowledge, no report is present in the literature of material science on optical study of MgO nanoparticles synthesized by solvent mixed spray pyrolysis method. As-synthesized MgO nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and ultraviolet-visible (UV-VIS) spectroscopy. 2. Experimental All the reagents were of analytical grade and they were used without further purification. MgO nanoparticles were prepared via quick precipitation route using magnesium nitrate (Mg(NO3)2·6H2O)

References

[1]  Y. Q. Huang, L. Meidong, Z. Yike, L. Churong, X. Donglin, and L. Shaobo, “Preparation and properties of ZnO-based ceramic films for low-voltage varistors by novel sol-gel process,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 86, no. 3, pp. 232–236, 2001.
[2]  F. Nastase, I. Stamatin, C. Nastase, D. Mihaiescu, and A. Moldovan, “Synthesis and characterization of PAni-SiO2 and PTh-SiO2 nanocomposites' thin films by plasma polymerization,” Progress in Solid State Chemistry, vol. 34, no. 2–4, pp. 191–199, 2006.
[3]  L. de Matteis, L. Custardoy, R. Fernandez-Pacheco et al., “Ultrathin MgO coating of superparamagnetic magnetite nanoparticles by combined coprecipitation and sol-gel synthesis,” Chemistry of Materials, vol. 24, no. 3, pp. 451–456, 2012.
[4]  K. Kaviyarasu and P. A. Devarajan, “A versatile route to synthesize MgO nanocrystals by combustion technique,” Der Pharma Chemica, vol. 3, no. 5, pp. 248–254, 2011.
[5]  L. E. Lange and S. K. Obendorf, “Effect of plasma etching on destructive adsorption properties of polypropylene fibers containing magnesium oxide nanoparticles,” Archives of Environmental Contamination and Toxicology, vol. 62, no. 2, pp. 185–194, 2012.
[6]  T. Jin and Y. He, “Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens,” Journal of Nanoparticle Research, vol. 13, no. 12, pp. 6877–6885, 2011.
[7]  H. Mirzaei and A. Davoodnia, “Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1,4-dihydropyridines,” Chinese Journal of Catalysis, vol. 33, no. 9-10, pp. 1502–1507, 2012.
[8]  Z. Camtakan, S. Erenturk, and S. Yusan, “Magnesium oxide nanoparticles: preparation, characterization, and uranium sorption properties,” Environmental Progress and Sustainable Energy, vol. 31, no. 4, pp. 536–543, 2012.
[9]  K. R. Nemade and S. A. Waghuley, “LPG sensing application of graphene/CeO2 quantum dots composite,” in Proceedings of the AIP International Conference on Recent Trends in Applied Physics and Material Science (RAM '13), vol. 1536, pp. 1258–1259, Rajasthan, India, 2013.
[10]  K. R. Nemade and S. A. Waghuley, “UV–VIS spectroscopic study of one pot synthesized strontium oxide quantum dots,” Results in Physics, vol. 3, pp. 52–54, 2013.
[11]  N. A. Bakr, A. M. Funde, V. S. Waman et al., “Determination of the optical parameters of a-Si:H thin films deposited by hot wire–chemical vapour deposition technique using transmission spectrum only,” Pramana: Journal of Physics, vol. 76, no. 3, pp. 519–531, 2011.
[12]  P. Sharma and S. C. Katyal, “Determination of optical parameters of a-(As2Se3)90Ge10 thin film,” Journal of Physics D: Applied Physics, vol. 40, no. 7, article 038, pp. 2115–2120, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133