We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31 levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process. 1. Introduction Molecular recognition processes control a huge number of aspects of life on Earth. The ability of molecules to recognize a certain pattern of atom distribution and not another is central to catalysis, drug effects, chemical reactivity, and so forth. Concerning the recognition by a drug of one or more receptors, this is a phenomenon that still needs to be fully understood to design new agonists or antagonists for a given receptor type. The central problem of the drug-receptor interaction is the following: how can a certain molecule be recognized by two or more receptors and display different affinities for them? Among the molecules having this interesting property we may cite dopaminergic, serotoninergic, and opioid compounds. In the following we shall focus on the latter. Regarding opioids there is abundant evidence for the existence of four major classes of receptors in the central nervous system (CNS), designated as , , , and nociceptin, as well as subtypes within the first three classes (we employed capital letters to avoid confusions because similar small Greek letters are used to design reactivity indices used below). Each receptor type has a distinct selectivity profile and a unique distribution within
References
[1]
F. A. Gorin and G. R. Marshall, “Proposal for the biologically active conformation of opiates and enkephalin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 11, pp. 5179–5183, 1977.
[2]
S. K. Burt, G. H. Loew, and G. M. Hashimoto, “Quantum chemical studies of molecular features and receptor interactions that modulate opiate agonist and antagonist activity,” Annals of the New York Academy of Sciences, vol. 367, pp. 219–239, 1981.
[3]
M. C. Fournie-Zaluski, G. Gacel, and B. Maigret, “Structural requirements for specific recognition of μ or δ opiate receptors,” Molecular Pharmacology, vol. 20, no. 3, pp. 484–491, 1981.
[4]
G. Loew, G. Hashimoto, and L. Williamson, “Conformational-energy studies of tetrapeptide opiates. Candidate active and inactive conformations,” Molecular Pharmacology, vol. 22, no. 3, pp. 667–677, 1982.
[5]
A. Lavecchia, G. Greco, E. Novellino, F. Vittorio, and G. Ronsisvalle, “Modeling of κ-opioid receptor/agonists interactions using pharmacophore-based and docking simulations,” Journal of Medicinal Chemistry, vol. 43, no. 11, pp. 2124–2134, 2000.
[6]
G. G. Bonner, P. Davis, D. Stropova et al., “Opiate aromatic pharmacophore structure-activity relationships in CTAP analogues determined by topographical bias, two-dimensional NMR, and biological activity assays,” Journal of Medicinal Chemistry, vol. 43, no. 4, pp. 569–580, 2000.
[7]
D. Bernard, A. Coop, and A. D. MacKerell Jr., “Conformationally sampled pharmacophore for peptidic δ opioid ligands,” Journal of Medicinal Chemistry, vol. 48, no. 24, pp. 7773–7780, 2005.
[8]
N. E. Kuz'mina, E. S. Osipova, V. S. Kuz'min, and V. B. Sitnikov, “A general model of the opiate pharmacophore 1. Regions of the opiate pharmacophore responsible for nonselective affinity for the opiate receptor,” Russian Chemical Bulletin, vol. 55, no. 9, pp. 1523–1529, 2006.
[9]
N. E. Kuz'mina, E. S. Osipova, V. S. Kuz'min, and V. B. Sitnikov, “General model of the opiate pharmacophore : 22. Regions of the opiate pharmacophore defining agonistic properties of the opiate receptor ligands,” Russian Chemical Bulletin, vol. 57, no. 6, pp. 1277–1284, 2008.
[10]
N. E. Kuz'mina, E. S. Osipova, V. S. Kuz'min, and V. B. Sitnikov, “General model of the opiate pharmacophore : 33. Regions of the opiate pharmacophore determining antagonistic properties of the opiate receptor ligands,” Russian Chemical Bulletin, vol. 57, no. 6, pp. 1285–1298, 2008.
[11]
D. Bernard, A. Coop, and A. D. MacKerell, “Quantitative conformationally sampled pharmacophore for δ opioid ligands: reevaluation of hydrophobic moieties essential for biological activity,” Journal of Medicinal Chemistry, vol. 50, no. 8, pp. 1799–1809, 2007.
[12]
J. Shim, A. Coop, and A. D. MacKerell, “Consensus 3D model of μ-opioid receptor ligand efficacy based on a quantitative conformationally sampled pharmacophore,” Journal of Physical Chemistry B, vol. 115, no. 22, pp. 7487–7496, 2011.
[13]
A. W. Lipkowski, S. W. Tam, and P. S. Portoghese, “Peptides as receptor selectivity modulators of opiate pharmacophores,” Journal of Medicinal Chemistry, vol. 29, no. 7, pp. 1222–1225, 1986.
[14]
P. S. Portoghese, D. L. Larson, G. Ronsisvalle et al., “Hybrid bivalent ligands with opiate and enkephalin pharmacophores,” Journal of Medicinal Chemistry, vol. 30, no. 11, pp. 1991–1994, 1987.
[15]
P. S. Portoghese, H. Nagase, and A. E. Takemori, “Only one pharmacophore is required for the κ opioid antagonist selectivity of norbinaltorphimine,” Journal of Medicinal Chemistry, vol. 31, no. 7, pp. 1344–1347, 1988.
[16]
D. L. Larson, R. M. Jones, S. A. Hjorth, T. W. Schwartz, and P. S. Portoghese, “Binding of norbinaltorphimine (norBNI) congeners to wild-type and mutant mu and kappa opioid receptors: molecular recognition loci for the pharmacophore and address components of kappa antagonists,” Journal of Medicinal Chemistry, vol. 43, no. 8, pp. 1573–1576, 2000.
[17]
G. Balboni, R. Guerrini, S. Salvadori et al., “Evaluation of the Dmt-Tic pharmacophore: conversion of a potent δ-opioid receptor antagonist into a potent δ agonist and ligands with mixed properties,” Journal of Medicinal Chemistry, vol. 45, no. 3, pp. 713–720, 2002.
[18]
G. Balboni, S. Salvadori, R. Guerrini et al., “Potent δ-opioid receptor agonists containing the Dmt-Tic pharmacophore,” Journal of Medicinal Chemistry, vol. 45, no. 25, pp. 5556–5563, 2002.
[19]
P. Grundt, I. A. Williams, J. W. Lewis, and S. M. Husbands, “Identification of a new scaffold for opioid receptor antagonism based on the 2-amino-1,1-dimethyl-7-hydroxytetralin pharmacophore,” Journal of Medicinal Chemistry, vol. 47, no. 21, pp. 5069–5075, 2004.
[20]
G. Balboni, S. Salvadori, R. Guerrini et al., “Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on δ-opioid receptor selectivity and antagonism,” Journal of Medicinal Chemistry, vol. 47, no. 16, pp. 4066–4071, 2004.
[21]
D. J. Daniels, A. Kulkarni, Z. Xie, R. G. Bhushan, and P. S. Portoghese, “A bivalent ligand (KDAN-18) containing δ-antagonist and κ-agonist pharmacophores bridges δ2 and κ1 opioid receptor phenotype,” Journal of Medicinal Chemistry, vol. 48, no. 6, pp. 1713–1716, 2005.
[22]
X. Peng, B. I. Knapp, J. M. Bidlack, and J. L. Neumeyer, “Synthesis and preliminary in vitro investigation of bivalent ligands containing homo- and heterodimeric pharmacophores at μ, δ, and κ opioid receptors,” Journal of Medicinal Chemistry, vol. 49, no. 1, pp. 256–262, 2006.
[23]
R. S. Agnes, Y. S. Lee, P. Davis et al., “Structure-activity relationships of bifunctional peptides based on overlapping pharmacophores at opioid and cholecystokinin receptors,” Journal of Medicinal Chemistry, vol. 49, no. 10, pp. 2868–2875, 2006.
[24]
G. Balboni, V. Onnis, C. Congiu et al., “Effect of lysine at C-terminus of the Dmt-Tic opioid pharmacophore,” Journal of Medicinal Chemistry, vol. 49, no. 18, pp. 5610–5617, 2006.
[25]
G. Balboni, S. Fiorini, A. Baldisserotto et al., “Further studies on lead compounds containing the opioid pharmacophore Dmt-Tic,” Journal of Medicinal Chemistry, vol. 51, no. 16, pp. 5109–5117, 2008.
[26]
D. Kracht, E. Rack, D. Schepmann, R. Fr?hlich, and B. Wünsch, “Stereoselective synthesis and structure-affinity relationships of bicyclic κ receptor agonists,” Organic and Biomolecular Chemistry, vol. 8, no. 1, pp. 212–225, 2010.
[27]
G. Balboni, S. Salvadori, C. Trapella et al., “Evolution of the bifunctional lead μ agonist/δ Antagonist containing the 2′,6′-dimethyl- l -tyrosine-1,2,3,4- tetrahydroisoquinoline-3-carboxylic acid (Dmt-Tic) opioid pharmacophore,” ACS Chemical Neuroscience, vol. 1, no. 2, pp. 155–164, 2010.
[28]
Y. Tang, J. Yang, M. M. Lunzer, M. D. Powers, and P. S. Portoghese, “A κ opioid pharmacophore becomes a spinally selective κ-δ Agonist when modified with a basic extender arm,” ACS Medicinal Chemistry Letters, vol. 2, no. 1, pp. 7–10, 2011.
[29]
J. S. Gomez-Jeria and P. Sotomayor, “Quantum chemical study of electronic structure and receptor binding in opiates,” Journal of Molecular Structure: THEOCHEM, vol. 166, no. C, pp. 493–498, 1988.
[30]
J. S. Gómez-Jeria, L. Lagos-Arancibia, and E. Sobarzo-Sánchez, “Theoretical study of the opioid receptor selectivity of some 7-arylidenenaltrexones,” Boletin de la Sociedad Chilena de Quimica, vol. 48, no. 1, pp. 61–66, 2003.
[31]
J. S. Gómez-Jeria, L. A. Gerli-Candia, and S. M. Hurtado, “A structure-affinity study of the opioid binding of some 3-substituted morphinans,” Journal of the Chilean Chemical Society, vol. 49, no. 4, pp. 307–312, 2004.
[32]
K. Fukui, C. Nagata, and T. Yonezawa, “Electronic structure and auxin activity of benzoic acid derivatives,” Journal of the American Chemical Society, vol. 80, no. 9, pp. 2267–2270, 1958.
[33]
O. Chalvet, R. Daudel, and C. Moser, “A note on the interaction of carcinogenic molecules with cellular protein,” Cancer Research, vol. 18, no. 9, pp. 1033–1037, 1958.
[34]
O. Chalvet and R. Daudel, “Contribution à l’étude du mechanism d’action des hydrocarbures cancérogènes,” Comptes Rendus de l’Académie des Sciences, vol. 242, pp. 416–418, 1956.
[35]
A. Pullman and B. Pullman, érisation par les Substances Chimiques et Structure Moléculaire, Masson et Cie, Paris, France, 1955.
[36]
C. C. J. Roothaan, “New developments in molecular orbital theory,” Reviews of Modern Physics, vol. 23, no. 2, pp. 69–89, 1951.
[37]
K. Fukui, T. Yonezawa, and H. Shingu, “A molecular orbital theory of reactivity in aromatic hydrocarbons,” The Journal of Chemical Physics, vol. 20, no. 4, pp. 722–725, 1952.
[38]
K. Fukui, T. Yonezawa, C. Nagata, and H. Shingu, “Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules,” The Journal of Chemical Physics, vol. 22, no. 8, pp. 1433–1442, 1954.
[39]
K. Fukui, T. Yonezawa, and C. Nagata, “Interrelations of quantum-mechanical quantities concerning chemical reactivity of conjugated molecules,” The Journal of Chemical Physics, vol. 26, no. 4, pp. 831–841, 1957.
[40]
J. Sadlej, Semiempirical Methods in Quantum Chemistry, Ellis Horwood, New York, NY, USA, 1984.
[41]
W. J. Hehre, L. Radom, P. von Schleyer, and J. Pople, Ab Initio Molecular Orbital Theory, Wiley Interscience, New York, NY, USA, 1986.
[42]
R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, NY, USA, 1994.
[43]
G. Klopman and R. F. Hudson, “Polyelectronic perturbation treatment of chemical reactivity,” Theoretica Chimica Acta, vol. 8, no. 2, pp. 165–174, 1967.
[44]
R. F. Hudson and G. Klopman, “A general perturbation treatment of chemical reactivity,” Tetrahedron Letters, vol. 8, no. 12, pp. 1103–1108, 1967.
[45]
G. Klopman, “Chemical reactivity and the concept of charge- and frontier-controlled reactions,” Journal of the American Chemical Society, vol. 90, no. 2, pp. 223–234, 1968.
[46]
A. Cammarata, “Some electronic factors in drug-receptor interactions,” Journal of Medicinal Chemistry, vol. 11, no. 6, pp. 1111–1115, 1968.
[47]
A. J. Wohl, “Electronic molecular pharmacology: the benzothiadiazine antihypertensive agents. II. Multiple regression analyses relating biological potency and electronic structure,” Molecular Pharmacology, vol. 6, no. 3, pp. 195–205, 1970.
[48]
F. Peradejordi, A. N. Martin, and A. Cammarata, “Quantum chemical approach to structure-activity relationships of tetracycline antibiotics,” Journal of Pharmaceutical Sciences, vol. 60, no. 4, pp. 576–582, 1971.
[49]
F. Tomás and J. M. Aulló, “Monoamine oxidase inhibition by β-carbolines: a quantum chemical approach,” Journal of Pharmaceutical Sciences, vol. 68, no. 6, pp. 772–776, 1979.
[50]
O. K. Rice, Statistical Mechanics, Thermodynamics and Kinetics, W. H. Freeman, San Francisco, Calif, USA, 1967.
[51]
G. Herzberg, Spectra and Molecular Structure. II. Infrared and Raman Spectra of Diatomic Molecules, Van Nostrand, New York, NY, USA, 1945.
[52]
J. S. Gómez-Jeria, “On some problems in quantum pharmacology. I. The partition functions,” International Journal of Quantum Chemistry, vol. 23, pp. 1969–1972, 1983.
[53]
J. S. Gómez-Jeria, “Modeling the drug-receptor interaction in quantum pharmacology,” in Physics, Chemistry and Biology, J. Maruani, Ed., vol. IV, pp. 215–231, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989.
[54]
K. Fukui, T. Yonezawa, and C. Nagata, “Theory of substitution in conjugated molecules,” Bulletin of the Chemical Society of Japan, vol. 27, no. 7, pp. 423–427, 1954.
[55]
J. S. Gómez-Jeria, New reactivity indices in discrete and extended systems [Ph.D. thesis], Universidad Andrés Bello, Santiago, Chile, 2008.
[56]
R. G. Parr and R. G. Pearson, “Absolute hardness: companion parameter to absolute electronegativity,” Journal of the American Chemical Society, vol. 105, no. 26, pp. 7512–7516, 1983.
[57]
R. G. Pearson, “Chemical hardness and bond dissociation energies,” Journal of the American Chemical Society, vol. 110, no. 23, pp. 7684–7690, 1988.
[58]
R. G. Pearson, “Absolute electronegativity and hardness: application to inorganic chemistry,” Inorganic Chemistry, vol. 27, no. 4, pp. 734–740, 1988.
[59]
Z. Zhou and R. G. Parr, “New measures of aromaticity: absolute hardness and relative hardness,” Journal of the American Chemical Society, vol. 111, no. 19, pp. 7371–7379, 1989.
[60]
R. G. Pearson, “Absolute electronegativity and hardness: applications to organic chemistry,” Journal of Organic Chemistry, vol. 54, no. 6, pp. 1423–1430, 1989.
[61]
R. G. Pearson, “Chemical hardness and the electronic chemical potential,” Inorganica Chimica Acta, vol. 198–200, pp. 781–786, 1992.
[62]
R. G. Pearson, “The principle of maximum hardness,” Accounts of Chemical Research, vol. 26, no. 5, pp. 250–255, 1993.
[63]
R. G. Parr, L. V. Szentpály, and S. Liu, “Electrophilicity index,” Journal of the American Chemical Society, vol. 121, no. 9, pp. 1922–1924, 1999.
[64]
R. K. Roy, V. Usha, J. Paulovi?, and K. Hirao, “Are the local electrophilicity descriptors reliable indicators of global electrophilicity trends?” Journal of Physical Chemistry A, vol. 109, no. 20, pp. 4601–4606, 2005.
[65]
R. G. Parr and W. Yang, “Density-functional theory of the electronic structure of molecules,” Annual Review of Physical Chemistry, vol. 46, no. 1, pp. 701–728, 1995.
[66]
H. Chermette, “Chemical reactivity indexes in density functional theory,” Journal of Computational Chemistry, vol. 20, no. 1, pp. 129–154, 1999.
[67]
P. Geerlings, F. De Proft, and W. Langenaeker, “Conceptual density functional theory,” Chemical Reviews, vol. 103, no. 5, pp. 1793–1874, 2003.
[68]
P. W. Ayers, J. S. M. Anderson, and L. J. Bartolotti, “Perturbative perspectives on the chemical reaction prediction problem,” International Journal of Quantum Chemistry, vol. 101, no. 5, pp. 520–534, 2005.
[69]
J. L. Gázquez, “Perspectives on the density functional theory of chemical reactivity,” Journal of the Mexican Chemical Society, vol. 52, no. 1, pp. 3–10, 2008.
[70]
S. B. Liu, “Conceptual density functional theory and some recent developments,” Acta Physico-Chimica Sinica, vol. 25, no. 3, pp. 590–600, 2009.
[71]
M. Ojeda-Vergara, Chemistry [M.S. thesis], University of Chile, Faculty of Sciences, 1991.
[72]
J. S. Gomez-Jeria, M. Ojeda-Vergara, and C. Donoso-Espinoza, “Quantum-chemical structure-activity relationships in carbamate insecticides,” Molecular Engineering, vol. 5, no. 4, pp. 391–401, 1995.
[73]
J. S. Gómez-Jeria and M. Ojeda-Vergara, “Parametrization of the orientational effects in the drug-receptor interaction,” Journal of the Chilean Chemical Society, vol. 48, no. 4, pp. 119–124, 2003.
[74]
J. S. Gomez-Jeria and D. R. Morales-Lagos, “Quantum chemical approach to the relationship between molecular structure and serotonin receptor binding affinity,” Journal of Pharmaceutical Sciences, vol. 73, no. 12, pp. 1725–1728, 1984.
[75]
J. S. Gómez-Jeria and D. Morales-Lagos, “The mode of binding of phenylalkylamines to the Serotonergic Receptor,” in QSAR in Design of Bioactive Drugs, J. R. Prous, Ed., pp. 145–173, J. R. Prous International Publishers, Barcelona, Spain, 1984.
[76]
J. S. Gómez-Jeria, D. Morales-Lagos, J. I. Rodriguez-Gatica, and J. C. Saavedra-Aguilar, “The relation between electronic structure and pA2 in a series of 5-substituted tryptamines,” International Journal of Quantum Chemistry, vol. 28, pp. 421–428, 1985.
[77]
J. S. Gomez-Jeria, D. Morales-Lagos, B. K. Cassels, and J. C. Saavedra-Aguilar, “Electronic structure and serotonin receptor binding affinity of 7-substituted tryptamines QSAR of 7-substituted tryptamines,” Quantitative Structure-Activity Relationships, vol. 5, no. 4, pp. 153–157, 1986.
[78]
J. S. Gomez-Jeria, B. K. Cassels, and J. C. Saavedra-Aguilar, “A quantum-chemical and experimental study of the hallucinogen (±)-1-(2,5-dimethoxy-4-nitrophenyl)-2-aminopropane (DON),” European Journal of Medicinal Chemistry, vol. 22, no. 5, pp. 433–437, 1987.
[79]
J. S. Gómez-Jeria and M. Ojeda-Vergara, “Electrostatic medium effects and formal quantum structure-activity relationships in apomorphines interacting with D1 and D2 dopamine receptors,” International Journal of Quantum Chemistry, vol. 61, no. 6, pp. 997–1002, 1997.
[80]
J. S. Gómez-Jeria and L. Lagos-Arancibia, “Quantum-chemical structure-affinity studies on kynurenic acid derivatives as Gly/NMDA receptor ligands,” International Journal of Quantum Chemistry, vol. 71, no. 6, pp. 505–511, 1999.
[81]
J. S. Gómez-Jeria, F. Soto-Morales, J. Rivas, and A. Sotomayor, “A theoretical structure-affinity relationship study of some cannabinoid derivatives,” Journal of the Chilean Chemical Society, vol. 53, no. 1, pp. 1382–1388, 2008.
[82]
J. S. Gómez-Jeria, F. Soto-Morales, and G. Larenas-Gutierrez, “A zindo/1 study of the cannabinoid-mediated inhibition of adenylyl cyclase,” Iranian International Journal of Science, vol. 4, pp. 151–164, 2003.
[83]
F. Soto-Morales and J. S. Gómez-Jeria, “A theoretical study of the inhibition of wild-type and drug-resistant HTV-1 reverse transcriptase by some thiazolidenebenzenesulfonamide derivatives,” Journal of the Chilean Chemical Society, vol. 52, no. 3, pp. 1214–1219, 2007.
[84]
J. S. Gómez-Jeria, “A DFT study of the relationships between electronic structure and peripheral benzodiazepine receptor affinity in a group of N,N-dialkyl-2- phenylind0l-3-ylglyoxylamides,” Journal of the Chilean Chemical Society, vol. 55, no. 3, pp. 381–384, 2010.
[85]
B. Duperray, “Corrélations quantitatives entre activité pharmacologique et paramètres physicochimiques,” Chimie Thérapeutique, no. 4, pp. 305–334, 1971.
[86]
A. Cammarata, “Some electronic factors in drug-receptor interactions,” Journal of Medicinal Chemistry, vol. 11, no. 6, pp. 1111–1115, 1968.
[87]
A. Cammarata, R. C. Allen, J. K. Seydel, and E. Wempe, “Cautions regarding the physical interpretation of statistically based structure-activity relationships,” Journal of Pharmaceutical Sciences, vol. 59, no. 10, pp. 1496–1499, 1970.
[88]
A. Cammarata, “Electronic representation of the lipophilic parameter, π,” Journal of Medicinal Chemistry, vol. 14, no. 4, pp. 269–274, 1971.
[89]
M. P. Wentland, R. Lou, Q. Lu et al., “Syntheses of novel high affinity ligands for opioid receptors,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 8, pp. 2289–2294, 2009.
[90]
J. S. Gómez-Jeria, “Calculation of the nucleophilic superdelocalizability by the CNDO/2 method,” Journal of Pharmaceutical Sciences, vol. 71, no. 12, pp. 1423–1424, 1982.
[91]
Hypercube, 1115 NW 4th Street, Gainesville, Fl. 32601, USA.
[92]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 98, Revision A.11.3, Gaussian, Pittsburgh, Pa, USA, 2002.
[93]
J. S. Gómez-Jeria, “An empirical way to correct some drawbacks of mulliken population analysis,” Journal of the Chilean Chemical Society, vol. 54, no. 4, pp. 482–485, 2009.
[94]
J. S. Gómez-Jeria, “Minimal molecular models for the study of nanostructures,” Journal of Computational and Theoretical Nanoscience, vol. 6, no. 6, pp. 1361–1369, 2009.
[95]
A. E. Aliaga, H. Ahumada, K. Sepúlveda et al., “Surface-enhanced Raman scattering, molecular dynamics and molecular orbital studies of the MRKDV immunostimulant peptide,” The Journal of Physical Chemistry C, vol. 115, no. 10, pp. 3982–3989, 2011.
[96]
C. Garrido, A. E. Aliaga, J. S. Gómez-Jeria, J. J. Cárcamo, E. Clavijo, and M. M. Campos-Vallette, “Interaction of the C-terminal peptide from pigeon cytochrome C with silver nanoparticles. A Raman, SERS and theoretical study,” Vibration Scopy, vol. 61, pp. 94–98, 2012.
[97]
StatSoft, Statistica, v. 8. 0, 2007.
[98]
J. M. Boeynaems and E. Jacques Dumont, Outlines of Receptor Theory, Elsevier Science, 1980.